python之路-----python操做 mysql

 

========================pymysql============================html

一.pymysql 基礎mysql

  安裝命令:pip3 install pymysql -i https://pypi.douban.com/simplesql

二.pymysql命令數據庫

 1.連接數據庫編程

conn = pymysql.connect(host='127.0.0.1', port=3306, user='school_spt', passwd='123456', db='school_info')   #返回個連接對象

 2.建立遊標session

cursor = conn.cursor()

 3.sql拼接命令oracle

1.字符串拼接(不推薦使用該方式,容易被sql注入)
user='root'
pwd='123456'
sql='select * from userinfo where password=%s and username=%s'%(pwd,user)

2.pymysql命令自帶拼接
executsql命令, args)    #args能夠是列表,元組或者字典

列表:

user='root'
pwd='123456'
sql='select * from userinfo where password=%s and username=%s'
cursor.execute(sql,[pwd,user]) 
元組
user='root'
pwd='123456'
sql='select * from userinfo where password=%s and username=%s'
cursor.execute(sql,(pwd,user)) 

字典
sql='select * from userinfo where password=%(password)s and username=%(username)s'
cursor.execute(sql,({'password':pwd,'username':user}))

  4.查app

sql='select * from userinfo'
res=cursor.execute(sql)   #返回受影響的行數
#獲取返回的數據
cursor.fetchone()      #獲取返回的第一行內容
cursor.fetchmany(n)    #獲取返回的前n行內容
cursor.fetchall()          #獲取返回的所有內容

#返回的數據默認是元組形式,若是要以字典形式顯示
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)

  5.改(改,刪,增)框架

1.增
    sql=‘insert into userinfo(username,password) values(%s,%s)’
    cursor.execute(sql,('root','123'));   #單條插入
    也可使用批量插入數據
    cursor.executemany(sql,[('root','123'),('root1','1234'),('root2','123')]);
2.改,刪沒有批量執行命令,批量通常都使用單條執行
3.增,刪,改操做後,都須要使用 conn.commit()來確認提交數據

  6.execute會返回受影響的行數。通常不適用編程語言

  7.scroll 

  在fetch數據時按照順序進行(相似生成器),可使用cursor.scroll(num,mode)來移動遊標位置,如:

  • cursor.scroll(1,mode='relative')  # 相對當前位置移動
  • cursor.scroll(2,mode='absolute') # 相對絕對位置移動

  8.獲取最後的自增id值(lastrowid)

id=cursor.lastrowid

  9.關閉遊標和連接

cursor.close()  #先關閉遊標
conn.close()    #再關閉鏈接 

 =====================================================================================================================

 

==============================SQLAchemy=========================================

一.ORM框架

  ORM(Object Relational Mapping)對象關係映射,用於實現面向對象編程語言裏不一樣類型系統的數據之間的轉換。從效果上說,它實際上是建立了一個可在編程語言裏使用的--「虛擬對象數據庫」。

  簡單來講,ORM的做用是:

    1.提供簡單的規則

    2.自動轉換爲sql語句

  ORM分爲兩類:

    1.code first :手動建立類和數據庫  ----------->orm-------->表(根據代碼生成對應的數據表)

    2.db first  :手動建立數據庫以及表----------->orm框架------->自動生成類(根據表來生成對應的代碼)

  ORM框架只是負責將代碼轉換爲對應的sql語句,而連接數據庫執行這些語句則須要其餘的模塊,如pymysql。

 

二.SQLAchemy

  SQLAlchemy是Python編程語言下的一款ORM框架,該框架創建在數據庫API之上,使用關係對象映射進行數據庫操做,簡言之即是:將對象轉換成SQL,而後使用數據API執行SQL並獲取執行結果。

  1.安裝

pip3 install SQLAlchemy

  2.SQLAchemy 結構

 

 SQLAlchemy自己沒法操做數據庫,其必須以來pymsql等第三方插件,Dialect用於和數據API進行交流,根據配置文件的不一樣調用不一樣的數據庫API,從而實現對數據庫的操做,如:

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
   
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
   
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
   
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
   
更多詳見:http://docs.sqlalchemy.org/en/latest/dialects/index.html

  3.SQLAchemy使用

  3.1 使用 Engine/ConnectionPooling/Dialect 進行數據庫操做,Engine使用ConnectionPooling鏈接數據庫,而後再經過Dialect執行SQL語句。

from sqlalchemy import create_engine
  
  
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
  
# 執行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
# )
  
# 新插入行自增ID
# cur.lastrowid
  
# 執行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]
# )
  
  
# 執行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
#     host='1.1.1.99', color_id=3
# )
  
# 執行SQL
# cur = engine.execute('select * from hosts')
# 獲取第一行數據
# cur.fetchone()
# 獲取第n行數據
# cur.fetchmany(3)
# 獲取全部數據
# cur.fetchall()
連接數據庫,執行命令

  3.2 ORM功能使用

    使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 全部組件對數據進行操做。根據類建立對象,對象轉換成SQL,執行SQL。

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
 
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
 
Base = declarative_base()
 
# 建立單表
class Users(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))
 
    __table_args__ = (
    UniqueConstraint('id', 'name', name='uix_id_name'),
        Index('ix_id_name', 'name', 'extra'),
    )
 
 
# 一對多
class Favor(Base):
    __tablename__ = 'favor'
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default='red', unique=True)
 
 
class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))
 
 
# 多對多
class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
 
 
class Server(Base):
    __tablename__ = 'server'
 
    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
 
 
class ServerToGroup(Base):
    __tablename__ = 'servertogroup'
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))
 
 
def init_db():
    Base.metadata.create_all(engine)
 
 
def drop_db():
    Base.metadata.drop_all(engine)
建立表

注:設置外檢的另外一種方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])

  3.2.2 操做表

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)

Base = declarative_base()

# 建立單表
class Users(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))

    __table_args__ = (
    UniqueConstraint('id', 'name', name='uix_id_name'),
        Index('ix_id_name', 'name', 'extra'),
    )

    def __repr__(self):
        return "%s-%s" %(self.id, self.name)

# 一對多
class Favor(Base):
    __tablename__ = 'favor'
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default='red', unique=True)

    def __repr__(self):
        return "%s-%s" %(self.nid, self.caption)

class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))
    # 與生成表結構無關,僅用於查詢方便
    favor = relationship("Favor", backref='pers')

# 多對多
class ServerToGroup(Base):
    __tablename__ = 'servertogroup'
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))
    group = relationship("Group", backref='s2g')
    server = relationship("Server", backref='s2g')

class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
    # group = relationship('Group',secondary=ServerToGroup,backref='host_list')


class Server(Base):
    __tablename__ = 'server'

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)




def init_db():
    Base.metadata.create_all(engine)


def drop_db():
    Base.metadata.drop_all(engine)


Session = sessionmaker(bind=engine)
session = Session()
表結構 + 數據庫鏈接
obj = Users(name="alex0", extra='sb')
session.add(obj)
session.add_all([
    Users(name="alex1", extra='sb'),
    Users(name="alex2", extra='sb'),
])
session.commit()
session.query(Users).filter(Users.id > 2).delete()
session.commit()
session.query(Users).filter(Users.id > 2).update({"name" : "099"})
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
session.commit()
ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter_by(name='alex').first()

ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(User.id).all()

ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
# 條件
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
    or_(
        Users.id < 2,
        and_(Users.name == 'eric', Users.id > 3),
        Users.extra != ""
    )).all()


# 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all()

# 限制
ret = session.query(Users)[1:2]

# 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()

# 分組
from sqlalchemy.sql import func

ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).all()

ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()

# 連表

ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()

ret = session.query(Person).join(Favor).all()

ret = session.query(Person).join(Favor, isouter=True).all()


# 組合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()

q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
補充
相關文章
相關標籤/搜索