JavaShuo
欄目
標籤
算法——博弈論
時間 2020-12-27
原文
原文鏈接
1,BASH GAME 每次取1-m個, 如果當我取完後的值變爲n=m+1時,無論他取多少,我都能一次性取完。所以,要想獲勝,我必須得在取數次後令n的值變爲m+1。 所以:令 n=(m+1)*r+s, s<=m,我只需要每次拿走s個物品,無論後者取走k,1《k《m個物品,我只需要取m+1-k個,就一定能保持獲勝。 s=0時,先手者必輸。 所以。令m=n mod(m+1) 如果 m=0先手者
>>阅读原文<<
相關文章
1.
淺談算法——博弈論
2.
【算法】簡單博弈論
3.
博弈論-Bash博弈
4.
博弈論及算法實現
5.
博弈論及算法分析
6.
博弈論概論
7.
博弈論結論
8.
博弈論
9.
(九)博弈論
10.
001博弈論
更多相關文章...
•
CAP理論是什麼?
-
NoSQL教程
•
PHP 運算符
-
PHP教程
•
算法總結-廣度優先算法
•
算法總結-深度優先算法
相關標籤/搜索
博弈論
博弈
算法導論
算法概論
零和博弈
算法 - Lru算法
算法
博弈與社會
偉大的博弈
PHP 7 新特性
PHP教程
MySQL教程
算法
計算
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
《給初學者的Windows Vista的補遺手冊》之074
2.
CentoOS7.5下編譯suricata-5.0.3及簡單使用
3.
快速搭建網站
4.
使用u^2net打造屬於自己的remove-the-background
5.
3.1.7 spark體系之分佈式計算-scala編程-scala中模式匹配match
6.
小Demo大知識-通過控制Button移動來學習Android座標
7.
maya檢查和刪除多重面
8.
Java大數據:大數據開發必須掌握的四種數據庫
9.
強烈推薦幾款IDEA插件,12款小白神器
10.
數字孿生體技術白皮書 附下載地址
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
淺談算法——博弈論
2.
【算法】簡單博弈論
3.
博弈論-Bash博弈
4.
博弈論及算法實現
5.
博弈論及算法分析
6.
博弈論概論
7.
博弈論結論
8.
博弈論
9.
(九)博弈論
10.
001博弈論
>>更多相關文章<<