4.建立slab描述符
struct kmem_cache * kmem_cache_create(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)) { return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, ctor); }
首先會先查找是否有已經建立的描述符能夠直接使用node
struct kmem_cache * __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)) { struct kmem_cache *cachep; cachep = find_mergeable(size, align, flags, name, ctor); if (cachep) { cachep->refcount++; /*調整對象大小,以便咱們清除kzalloc上的完整對象。*/ cachep->object_size = max_t(int, cachep->object_size, size); } return cachep; } struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, slab_flags_t flags, const char *name, void (*ctor)(void *)) { struct kmem_cache *s; if (slab_nomerge) return NULL; if (ctor) return NULL; size = ALIGN(size, sizeof(void *)); align = calculate_alignment(flags, align, size); size = ALIGN(size, align); flags = kmem_cache_flags(size, flags, name, NULL); if (flags & SLAB_NEVER_MERGE) return NULL; list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { //遍歷slab_root_caches中的節點,找到size合適的 if (slab_unmergeable(s)) continue; if (size > s->size) continue; if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) continue; /* * Check if alignment is compatible. * Courtesy of Adrian Drzewiecki */ if ((s->size & ~(align - 1)) != s->size) continue; if (s->size - size >= sizeof(void *)) continue; if (IS_ENABLED(CONFIG_SLAB) && align && (align > s->align || s->align % align)) continue; return s; } return NULL; }
若是沒有找到就會調用create_cache函數建立新的kmem_cache。數組
static struct kmem_cache *create_cache(const char *name, unsigned int object_size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *), struct mem_cgroup *memcg, struct kmem_cache *root_cache) { struct kmem_cache *s; int err; if (WARN_ON(useroffset + usersize > object_size)) useroffset = usersize = 0; err = -ENOMEM; s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);//分配一個kmem_cache數據結構 if (!s) goto out; //將name/size/align等參數寫到成員中, s->name = name; s->size = s->object_size = object_size; s->align = align; s->ctor = ctor; s->useroffset = useroffset; s->usersize = usersize; err = init_memcg_params(s, root_cache); if (err) goto out_free_cache; //建立slab緩衝區 err = __kmem_cache_create(s, flags); if (err) goto out_free_cache; s->refcount = 1; //將新的緩衝區加入到全局鏈表slab_caches中 list_add(&s->list, &slab_caches); memcg_link_cache(s, memcg); out: if (err) return ERR_PTR(err); return s; out_free_cache: destroy_memcg_params(s); kmem_cache_free(kmem_cache, s); goto out; }
這裏會先調用kmem_cache_zalloc申請一個kmem_cache數據結構,而後調用__kmem_cache_create()建立緩衝區,最後將緩衝區s->list加入到全局鏈表slab_caches中緩存
int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) { size_t ralign = BYTES_PER_WORD; gfp_t gfp; int err; unsigned int size = cachep->size; /* 檢查大小是否以字爲單位。爲了不在使用Redzoning時某些拱門未對齊的訪問,而且確保全部slab上的bufctl也正確對齊,須要這樣作。 */ size = ALIGN(size, BYTES_PER_WORD);//檢查size與系統的的word長度對齊 if (flags & SLAB_RED_ZONE) { ralign = REDZONE_ALIGN; /* If redzoning, ensure that the second redzone is suitably * aligned, by adjusting the object size accordingly. */ size = ALIGN(size, REDZONE_ALIGN); } /* 3) caller mandated alignment */ if (ralign < cachep->align) { //計算align對齊的大小 ralign = cachep->align; } /* disable debug if necessary */ if (ralign > __alignof__(unsigned long long)) flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); /* * 4) Store it. */ cachep->align = ralign; cachep->colour_off = cache_line_size(); //計算L1 cache行的大小 /* Offset must be a multiple of the alignment. */ if (cachep->colour_off < cachep->align) cachep->colour_off = cachep->align; if (slab_is_available()) gfp = GFP_KERNEL; //分配掩碼 else gfp = GFP_NOWAIT; kasan_cache_create(cachep, &size, &flags); size = ALIGN(size, cachep->align);//根據size 與align的對齊關係,計算出size的大小 /* * We should restrict the number of objects in a slab to implement * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. */ if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); if (set_objfreelist_slab_cache(cachep, size, flags)) { flags |= CFLGS_OBJFREELIST_SLAB; goto done; } if (set_off_slab_cache(cachep, size, flags)) { flags |= CFLGS_OFF_SLAB; goto done; } if (set_on_slab_cache(cachep, size, flags)) goto done; return -E2BIG; done: cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); //freelist index佔用空間的大小 cachep->flags = flags; cachep->allocflags = __GFP_COMP; if (flags & SLAB_CACHE_DMA) cachep->allocflags |= GFP_DMA; if (flags & SLAB_CACHE_DMA32) cachep->allocflags |= GFP_DMA32; if (flags & SLAB_RECLAIM_ACCOUNT) cachep->allocflags |= __GFP_RECLAIMABLE; cachep->size = size; cachep->reciprocal_buffer_size = reciprocal_value(size); if (OFF_SLAB(cachep)) { cachep->freelist_cache = kmalloc_slab(cachep->freelist_size, 0u); } err = setup_cpu_cache(cachep, gfp); //配置slab描述符 if (err) { __kmem_cache_release(cachep); return err; } return 0; }
這裏咱們先拿到內存的大小size,檢查是否與系統的WORD長度對齊。設置kmem_cache的colour爲第1行緩存的大小。網絡
下面咱們會先調用slab_objfreelist_slab_cache函數數據結構
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, size_t size, slab_flags_t flags) { size_t left; cachep->num = 0; if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) return false; left = calculate_slab_order(cachep, size, flags | CFLGS_OBJFREELIST_SLAB); if (!cachep->num) return false; if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) return false; cachep->colour = left / cachep->colour_off; return true; }
在這個函數中,咱們先計算slab的order和left空間。kmem_cache的着色區爲left/colour_offdom
static size_t calculate_slab_order(struct kmem_cache *cachep, size_t size, slab_flags_t flags) { size_t left_over = 0; int gfporder; for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {//從0開始計算最合適的gpforder值, 2^22 unsigned int num; size_t remainder; num = cache_estimate(gfporder, size, flags, &remainder); //計算在2^gfporder個頁面大小時,能夠容納多少個obj對象,剩下的用來cache colour if (!num) continue; /* 沒法處理超過SLAB_OBJ_MAX_NUM個對象 */ if (num > SLAB_OBJ_MAX_NUM) break; if (flags & CFLGS_OFF_SLAB) { struct kmem_cache *freelist_cache; size_t freelist_size; freelist_size = num * sizeof(freelist_idx_t); freelist_cache = kmalloc_slab(freelist_size, 0u); if (!freelist_cache) continue; /*須要避免在cache_grow_begin()中可能出現的循環條件*/ if (OFF_SLAB(freelist_cache)) continue; /* check if off slab has enough benefit */ if (freelist_cache->size > cachep->size / 2) continue; } /* Found something acceptable - save it away */ cachep->num = num; cachep->gfporder = gfporder; left_over = remainder; /*可回收VFS的平板一般具備GFP_NOFS的大部分分配,當咱們沒法縮小dcac時,咱們真的不想分配高階頁面*/ if (flags & SLAB_RECLAIM_ACCOUNT) break; /*大量的對象是好的,可是對於gfp()來講,很是大的slab目前是不利的。*/ if (gfporder >= slab_max_order) break; /*可接受的內部碎片?*/ if (left_over * 8 <= (PAGE_SIZE << gfporder)) break; } return left_over; }
計算slab的order時,是從0開始嘗試,一直到gfporder的最大值。針對每個order值,先估算在當前的2^order數量個頁面中,能夠容納多少個對象。個數要大於SLAB能夠容納的最大值。這裏咱們的flag應該不會進入CFLGS_OFF_SLAB分支。那麼就設置kmem_cache的個數與gfporder。剩餘空間若是小於頁面的1/8,那麼這個內碎片也是能夠接受的。函數
計算申請頁面能夠放多少個object須要調用cache_estimate函數ui
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, slab_flags_t flags, size_t *left_over) { unsigned int num; size_t slab_size = PAGE_SIZE << gfporder; slab管理結構能夠在slab外,也能夠在slab內。 若是在slab內,則爲slab分配的內存用於:每一個對象的buffer_size字節,每一個對象的freelist。不須要考慮freelist的對齊,由於freelist會放在在slab頁面的末尾。每一個對象將處於正確的對齊狀態。 若是在slab外,則對齊須要的大小將已經計算到尺寸中。由於slab都是頁面對齊的,因此對象在分配時將處於正確的對齊狀態。 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { num = slab_size / buffer_size; *left_over = slab_size % buffer_size; } else { num = slab_size / (buffer_size + sizeof(freelist_idx_t)); *left_over = slab_size % (buffer_size + sizeof(freelist_idx_t)); } return num; }
若是上面的過程執行失敗,會調用set_off_slab_cache函數,申請slab結構在slab外的緩衝區。調用流程與set_objfreelist_slab_cache相似。set_objfreelist_slab_cache會嘗試把freelist放在slab外面,若是一個object放不下freelist index,就表示這樣作不太合適,須要選擇其餘的kmem_cache.set_objfreelist_slab_cache若是執行失敗,會調用set_off_slab_cache,這個是會把freelist_index放在slab外面,這裏會先找合適的kmem_cache,若是找不到就算是失敗了。若是找到了,就判斷當前的剩餘空間能不能放下一個freelist,若是放不下,就將freelist放在slab外面,若是能放下,就把freelist放在slab裏面。若是都不行,就會把freelist放在slab內部。這個函數中不會判斷freelist index與object的大小。spa
最後會進入done標籤中。kmem_cache中的freelist大小爲對象個數*index。若是管理結構是在slab以外,那麼會給freelist_cache單獨申請一塊內存,用來放free_list。debug
最後調用setup_cpu_cache函數配置slab描述符。
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) { if (slab_state >= FULL) //狀態爲FULL時,表示slab機制已經初始化完成 return enable_cpucache(cachep, gfp); cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); if (!cachep->cpu_cache) return 1; if (slab_state == DOWN) { /* Creation of first cache (kmem_cache). */ set_up_node(kmem_cache, CACHE_CACHE); } else if (slab_state == PARTIAL) { /* For kmem_cache_node */ set_up_node(cachep, SIZE_NODE); } else { int node; for_each_online_node(node) { cachep->node[node] = kmalloc_node( sizeof(struct kmem_cache_node), gfp, node); BUG_ON(!cachep->node[node]); kmem_cache_node_init(cachep->node[node]); } } cachep->node[numa_mem_id()]->next_reap = jiffies + REAPTIMEOUT_NODE + ((unsigned long)cachep) % REAPTIMEOUT_NODE; cpu_cache_get(cachep)->avail = 0; cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; cpu_cache_get(cachep)->batchcount = 1; cpu_cache_get(cachep)->touched = 0; cachep->batchcount = 1; cachep->limit = BOOT_CPUCACHE_ENTRIES; return 0; }
若是此時slab_state的狀態爲FULL,表示slab機制已經初始化完成了。調用enable_cpucache函數,使能cpu_cache。若是狀態是PATRIAL_NODE或UP,會遍歷全部的節點,申請kmem_cache_node結構,寫到node節點中。並調用kmem_cache_node_init對這個節點進行初始化
/* Called with slab_mutex held always */ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) { int err; int limit = 0; int shared = 0; int batchcount = 0; err = cache_random_seq_create(cachep, cachep->num, gfp); if (err) goto end; if (!is_root_cache(cachep)) { struct kmem_cache *root = memcg_root_cache(cachep); limit = root->limit; shared = root->shared; batchcount = root->batchcount; } if (limit && shared && batchcount) goto skip_setup; /* 頭陣列用於三個目的: -建立LIFO排序,即返回高速緩存的對象 -減小自旋鎖操做的次數。 -減小slab和bufctl鏈上的鏈表操做數:數組操做更便宜。 猜中了數字,咱們應該按照Bonwick的描述進行自動調諧。 */ //根據對象的大小來計算空閒對象的最大閾值limit,limit默認選擇120 if (cachep->size > 131072) limit = 1; else if (cachep->size > PAGE_SIZE) limit = 8; else if (cachep->size > 1024) limit = 24; else if (cachep->size > 256) limit = 54; else limit = 120; /* CPU限制的任務(例如網絡路由)可能表現出cpu限制的分配行爲:一個cpu上的大多數分配,另外一個cpu上的大多數空閒操做。對於這些狀況,必須在cpus之間傳遞有效的對象。這是由共享陣列提供的。該陣列替代Bonwick的彈匣層。在單處理器上,它在功能上等效於(但效率較低)更大的限制。所以默認狀況下處於禁用狀態。 */ shared = 0; //若是slab對象須要小於一個頁面,shared設爲8 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) shared = 8; batchcount = (limit + 1) / 2; skip_setup: //計算batchcount數目(用於本地緩衝池和共享緩衝池之間填充對象的數量) err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); end: if (err) pr_err("enable_cpucache failed for %s, error %d\n", cachep->name, -err); return err; }
在enable_cpucache函數中。會根據對象的大小來計算空閒對象的最大閾值。設置shared,batchcount大小,而後調用do_tune_cpucache
static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount, int shared, gfp_t gfp) { int ret; struct kmem_cache *c; //配置slab描述符 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); if (slab_state < FULL) return ret; if ((ret < 0) || !is_root_cache(cachep)) return ret; lockdep_assert_held(&slab_mutex); for_each_memcg_cache(c, cachep) { /* return value determined by the root cache only */ __do_tune_cpucache(c, limit, batchcount, shared, gfp); } return ret; }
在這個函數中,首先會調用__do_tune_cpucache來配置slab描述符,若是slab狀態是FULL。
/*始終在保持slab_mutex的狀況下調用 */ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount, int shared, gfp_t gfp) { struct array_cache __percpu *cpu_cache, *prev; int cpu; //分配per-CPU類型的struct array_cache數據結構(對象緩衝池) cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); if (!cpu_cache) return -ENOMEM; prev = cachep->cpu_cache; cachep->cpu_cache = cpu_cache; /* 若是沒有先前的cpu_cache,則無需同步遠程cpus,所以跳過IPI。 */ if (prev) kick_all_cpus_sync(); check_irq_on(); cachep->batchcount = batchcount; cachep->limit = limit; cachep->shared = shared; if (!prev) goto setup_node; for_each_online_cpu(cpu) { LIST_HEAD(list); int node; struct kmem_cache_node *n; struct array_cache *ac = per_cpu_ptr(prev, cpu); node = cpu_to_mem(cpu); n = get_node(cachep, node); spin_lock_irq(&n->list_lock); free_block(cachep, ac->entry, ac->avail, node, &list); spin_unlock_irq(&n->list_lock); slabs_destroy(cachep, &list); } free_percpu(prev); setup_node: //初始化slab緩衝區cachep->kmem_cache_node數據結構 return setup_kmem_cache_nodes(cachep, gfp); }
在__do_tune_cpucache函數中,會先調用alloc_kmem_cache_cpus申請cpu_cache.這裏還會設置kmem_cache中的limit,shared,batchcount等值。而後遍歷每個在線的CPU,讀取他的array_cache。再獲取nodeID ,找到他的kmem_node,而後調用free_block函數,釋放裏面的對象。最後調用setup_kmem_cache_node函數初始化kmem_cache_node緩衝區
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) { int ret; int node; struct kmem_cache_node *n; for_each_online_node(node) { //遍歷全部的numa節點 ret = setup_kmem_cache_node(cachep, node, gfp, true); if (ret) goto fail; } return 0; fail: if (!cachep->list.next) { /* Cache is not active yet. Roll back what we did */ node--; while (node >= 0) { n = get_node(cachep, node); if (n) { kfree(n->shared); free_alien_cache(n->alien); kfree(n); cachep->node[node] = NULL; } node--; } } return -ENOMEM; } static int setup_kmem_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp, bool force_change) { int ret = -ENOMEM; struct kmem_cache_node *n; //slab節點 struct array_cache *old_shared = NULL; struct array_cache *new_shared = NULL; struct alien_cache **new_alien = NULL; LIST_HEAD(list); if (use_alien_caches) { new_alien = alloc_alien_cache(node, cachep->limit, gfp); if (!new_alien) goto fail; } //多核系統中shared可能大於0, if (cachep->shared) { //分配一個共享對象緩衝池,多核CPU之間共享空閒緩存對象 new_shared = alloc_arraycache(node, cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); if (!new_shared) goto fail; } ret = init_cache_node(cachep, node, gfp); if (ret) goto fail; n = get_node(cachep, node); spin_lock_irq(&n->list_lock); if (n->shared && force_change) { free_block(cachep, n->shared->entry, n->shared->avail, node, &list); n->shared->avail = 0; } if (!n->shared || force_change) { old_shared = n->shared; n->shared = new_shared; new_shared = NULL; } if (!n->alien) { n->alien = new_alien; new_alien = NULL; } spin_unlock_irq(&n->list_lock); slabs_destroy(cachep, &list); /*爲了保護在禁用irq的狀況下對n-> shared的無鎖訪問。若是在禁用irq的上下文中n-> shared不爲NULL,則能夠保證在從新啓用irq以前對其進行訪問都是有效的,由於它將在syncnize_rcu()以後釋放。*/ if (old_shared && force_change) synchronize_rcu(); fail: kfree(old_shared); kfree(new_shared); free_alien_cache(new_alien); return ret; }
在這裏會遍歷全部的numa節點,調用setup_mem_cache_node函數進行初始化。若是這個kmem_cache中須要配置共享緩衝池,就身親一個array_cache結構。
static struct array_cache *alloc_arraycache(int node, int entries, int batchcount, gfp_t gfp) { size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); struct array_cache *ac = NULL; ac = kmalloc_node(memsize, gfp, node); /* array_cache結構包含指向空閒對象的指針。可是,當將此類對象分配或轉移到另外一個緩存時,不會清除指針,而且在kmemleak掃描期間能夠將它們視爲有效引用。所以,kmemleak不得掃描此類對象。 */ kmemleak_no_scan(ac); init_arraycache(ac, entries, batchcount); return ac; } static void init_arraycache(struct array_cache *ac, int limit, int batch) { if (ac) { ac->avail = 0; ac->limit = limit; ac->batchcount = batch; ac->touched = 0; } }
申請的大小是指定的entrys大小加上array_cache自己的大小。申請了以後會將各個成員初始化。
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) { struct kmem_cache_node *n; /* 在開始任何事情以前,請爲cpu設置kmem_cache_node。確保此節點上的其餘CPU還沒有分配此CPU */ n = get_node(cachep, node); if (n) { spin_lock_irq(&n->list_lock); n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; spin_unlock_irq(&n->list_lock); return 0; } n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); if (!n) return -ENOMEM; kmem_cache_node_init(n); n->next_reap = jiffies + REAPTIMEOUT_NODE + ((unsigned long)cachep) % REAPTIMEOUT_NODE; n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; /*kmem_cache_nodes不會隨CPU來來去去。 slab_mutex在這裏是足夠的保護。*/ cachep->node[node] = n; return 0; } static void kmem_cache_node_init(struct kmem_cache_node *parent) { INIT_LIST_HEAD(&parent->slabs_full); INIT_LIST_HEAD(&parent->slabs_partial); INIT_LIST_HEAD(&parent->slabs_free); parent->total_slabs = 0; parent->free_slabs = 0; parent->shared = NULL; parent->alien = NULL; parent->colour_next = 0; spin_lock_init(&parent->list_lock); parent->free_objects = 0; parent->free_touched = 0; }
而後會調用init_cache_node函數,若是這個node已經存在的話,找到這個nodeid 對應的kmeme_cache_node節點,設置它的free_limit值。若是不存在,就新申請一個node,把它填入kmem_cache的node數組中。
如今咱們保證了能夠拿到node節點,會釋放掉這個kmem_cache的共享緩衝池。以上就完成了slab的初始化。
kmem_cache的銷燬是調用kmem_cache_destory函數
void kmem_cache_destroy(struct kmem_cache *s) { int err; if (unlikely(!s)) //若是kmem_cache爲空就直接退出 return; get_online_cpus();//與put_online_cpus配合使用 get_online_mems(); mutex_lock(&slab_mutex); s->refcount--; //緩存的應用計數減1. if (s->refcount)//若是計數不爲0 ,表示還有其餘人在使用,則直接退出 goto out_unlock; #ifdef CONFIG_MEMCG_KMEM memcg_set_kmem_cache_dying(s); mutex_unlock(&slab_mutex); put_online_mems(); put_online_cpus(); flush_memcg_workqueue(s); get_online_cpus(); get_online_mems(); mutex_lock(&slab_mutex); #endif //引用計數已是0了,就西安曉輝memcg,成功的話繼續調用shutdown_cache銷燬緩存 err = shutdown_memcg_caches(s); if (!err) err = shutdown_cache(s); if (err) { pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", s->name); dump_stack(); } out_unlock: mutex_unlock(&slab_mutex); put_online_mems(); put_online_cpus(); }
釋放緩存
static int shutdown_cache(struct kmem_cache *s) { /* free asan quarantined objects */ kasan_cache_shutdown(s); //釋放全部被slab佔用的資源 if (__kmem_cache_shutdown(s) != 0) return -EBUSY; memcg_unlink_cache(s); //刪除list list_del(&s->list); if (s->flags & SLAB_TYPESAFE_BY_RCU) { #ifdef SLAB_SUPPORTS_SYSFS sysfs_slab_unlink(s); #endif //若是有 rcu的話,就由slab_caches_to_rcu_destroy_work來釋放 list_add_tail(&s->list, &slab_caches_to_rcu_destroy); schedule_work(&slab_caches_to_rcu_destroy_work); } else { #ifdef SLAB_SUPPORTS_SYSFS sysfs_slab_unlink(s); sysfs_slab_release(s); #else //釋放緩存 slab_kmem_cache_release(s); #endif } return 0; } void slab_kmem_cache_release(struct kmem_cache *s) { __kmem_cache_release(s); destroy_memcg_params(s); kfree_const(s->name); kmem_cache_free(kmem_cache, s);//釋放緩存對象 } void __kmem_cache_release(struct kmem_cache *cachep) { int i; struct kmem_cache_node *n; cache_random_seq_destroy(cachep); free_percpu(cachep->cpu_cache); //釋放cpu_cache /* NUMA: free the node structures */ for_each_kmem_cache_node(cachep, i, n) { kfree(n->shared); //釋放共享緩衝池 free_alien_cache(n->alien); kfree(n);//釋放kmem_node節點 cachep->node[i] = NULL; } }