LOJ #2359. 「NOIP2016」每天愛跑步(倍增+線段樹合併)

題意

LOJ #2359. 「NOIP2016」每天愛跑步c++

題解

考慮把一個玩家的路徑 \((x, y)\) 拆成兩條,一條是 \(x\)\(lca\)\(x, y\) 最近公共祖先) 的路徑,另外一條是 \(lca\)\(y\) 的路徑。(對於 \(x, y\)\(lca\) 的狀況須要特殊考慮一下就好了)git

這個求 \(lca\) 的過程用倍增實現就好了。spa

假設令到達時間爲 \(at\)debug

不難發現,在樹上向上的路徑知足 \(dep_u + at_u=d_1\) (深度+到達時間) 是個定值。這個能夠這樣考慮,向上走 到達時間 \(+1\) ,且深度會 \(-1\) ,因此不會變。code

同理可得,向下走的路徑知足 \(dep_u - at_u=d_2\) (深度-到達時間) 是個定值。get

咱們考慮對於一條路徑,差分表示在樹上,也就是 \(x \to y\) 這條路徑,咱們在 \(x\) 處加入, \(y\) 處除去。it

而後考慮每次咱們線段樹合併兩個子樹維護關於 \(d_1\) 以及 \(d_2\) 出現的次數。class

而後對於一個點 \(u\) 要查詢的就是 \(dep_u + w_u = d_1'\) 的值,以及 \(dep_u - w_u = d_2'\) 的值。date

時間複雜度是 \(O(n \log n)\) 的,其實跑得挺快的bug

具體看代碼實現吧qwq。

代碼

#include <bits/stdc++.h>

#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)

using namespace std;

inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}

inline int read() {
    int x = 0, fh = 1; char ch = getchar();
    for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
    for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
    return x * fh;
}

void File() {
#ifdef zjp_shadow
    freopen ("2359.in", "r", stdin);
    freopen ("2359.out", "w", stdout);
#endif
}

const int N = 3e5 + 1e3, Maxn = N * 40;

#define lson ls[o], l, mid
#define rson rs[o], mid + 1, r

struct Segment_Tree {

    int ls[Maxn], rs[Maxn], sumv[Maxn], Size;

    Segment_Tree() { Size = 0; }

    void Update(int &o, int l, int r, int up, int uv) {
        if (!o) o = ++ Size;
        if (l == r) { sumv[o] += uv; return ; }
        int mid = (l + r) >> 1;
        if (up <= mid) Update(lson, up, uv); else Update(rson, up, uv);
    }

    int Query(int o, int l, int r, int qp) {
        if (l == r) return sumv[o];
        int mid = (l + r) >> 1;
        return qp <= mid ? Query(lson, qp) : Query(rson, qp);
    }

    int Merge(int x, int y, int l, int r) {
        if (!x || !y) return x | y;
        if (l == r) { sumv[x] += sumv[y]; return x; }
        int mid = (l + r) >> 1;
        ls[x] = Merge(ls[x], ls[y], l, mid); 
        rs[x] = Merge(rs[x], rs[y], mid + 1, r);
        return x;
    }

} TU, TD;

int to[N][23], dep[N], Log2[N]; vector<int> G[N];

void Dfs_Init(int u, int fa = 0) {
    to[u][0] = fa; dep[u] = dep[fa] + 1;
    for (int v : G[u]) if (v != fa) Dfs_Init(v, u);
}

int tmp;
inline int Get_Lca(int x, int y) {
    if (dep[x] < dep[y]) swap(x, y);
    int gap = dep[x] - dep[y];
    For (i, 0, Log2[gap] + 1)
        if ((gap >> i) & 1) x = to[x][i];
    if (x == y) return x;

    Fordown (i, Log2[dep[x]], 0)
        if (to[x][i] != to[y][i]) x = to[x][i], y = to[y][i]; tmp = y;
    return to[x][0];
}

int n, m, W[N], ans[N];

vector<int> TagU[N], TagD[N], DelU[N], DelD[N];

int rtU[N], rtD[N];
void Dfs(int u, int fa = 0) {
    for (int v : G[u]) if (v ^ fa) {
        Dfs(v, u);
        rtU[u] = TU.Merge(rtU[u], rtU[v], -n, n * 2);
        rtD[u] = TD.Merge(rtD[u], rtD[v], -n, n * 2);
    }
    for (int pos : TagU[u]) TU.Update(rtU[u], -n, n * 2, pos, 1);
    for (int pos : TagD[u]) TD.Update(rtD[u], -n, n * 2, pos, 1);

    ans[u] = TU.Query(rtU[u], -n, n * 2, W[u] + dep[u]) + 
             TD.Query(rtD[u], -n, n * 2, W[u] - dep[u]) ;

    for (int pos : DelU[u]) TU.Update(rtU[u], -n, n * 2, pos, -1);
    for (int pos : DelD[u]) TD.Update(rtD[u], -n, n * 2, pos, -1);
}

int main () {

    File();

    n = read(); m = read();

    For (i, 1, n - 1) { int u = read(), v = read(); G[u].push_back(v); G[v].push_back(u); }

    Dfs_Init(1);

    For (i, 2, n)
        Log2[i] = Log2[i >> 1] + 1;
    For (j, 1, Log2[n]) For (i, 1, n)
        to[i][j] = to[to[i][j - 1]][j - 1];

    For (i, 1, n)
        W[i] = read();

    For (i, 1, m) {
        int x = read(), y = read(), Lca = Get_Lca(x, y);

        int d1 = dep[x], d2 = - dep[x];

        if (Lca == y) { TagU[x].push_back(d1); DelU[y].push_back(d1); continue ; }
        if (Lca == x) { TagD[y].push_back(d2); DelD[x].push_back(d2); continue ; }

        d2 = (dep[x] - dep[Lca] + 1) - dep[tmp];
        TagU[x].push_back(d1); DelU[Lca].push_back(d1);
        TagD[y].push_back(d2); DelD[tmp].push_back(d2);
    }

    Dfs(1);
    For (i, 1, n)
        printf ("%d%c", ans[i], i == iend ? '\n' : ' ');

    return 0;

}
相關文章
相關標籤/搜索