洛谷P4466 [國家集訓隊] 和與積

所求即爲:c++

\[\large \sum_{a=1}^n\sum_{b=a+1}^n\left[ a+b \mid ab \right] \]

\(\gcd(a,b)=d,a=id,b=jd\),得:git

\[\large\begin{aligned} d(i+j)&\mid ijd^2\\ (i+j)&\mid ijd\\ \end{aligned} \]

發現由於 \(\gcd(i,j)=1\),因此 \((i+j)\not \mid ij\),這是由於有:函數

\[\large \gcd(i+j,i)=\gcd(i+j,j)=1 \]

所以得 \((i+j)\mid d\)。原式變爲:spa

\[\large\begin{aligned} &\sum_{i=1}^{\sqrt n}\sum_{j=i+1}^{\sqrt n}\left[ \gcd(i,j)=1 \right]\left\lfloor \frac{n}{j(i+j)} \right\rfloor \\ =&\sum_{i=1}^{\sqrt n}\sum_{j=i+1}^{\sqrt n}\sum_{d\mid i \and d \mid j}\mu(d)\left\lfloor \frac{n}{j(i+j)} \right\rfloor \\ =&\sum_{d=1}^{\sqrt n}\mu(d)\sum_{i=1}^{\sqrt n}\left[ d\mid i \right]\sum_{j=i+1}^{\sqrt n}\left[ d\mid j \right]\left\lfloor \frac{n}{j(i+j)} \right\rfloor \\ =&\sum_{d=1}^{\sqrt n}\mu(d)\sum_{i=1}^{\left\lfloor\frac{\sqrt n}{d}\right\rfloor}\sum_{j=i+1}^{\left\lfloor\frac{\sqrt n}{d}\right\rfloor}\left\lfloor \frac{n}{d^2j(i+j)} \right\rfloor \\ =&\sum_{d=1}^{\sqrt n}\mu(d)\sum_{i=2}^{\left\lfloor\frac{\sqrt n}{d}\right\rfloor}\sum_{j=i+1}^{2i-1}\left\lfloor \frac{\left\lfloor \frac{n}{d^2i} \right\rfloor}{j} \right\rfloor \\ \end{aligned} \]

最後一步是分別枚舉 \(j\)\(i+j\)。枚舉 \(d,j\) 後,\(\left\lfloor \frac{n}{d^2i} \right\rfloor\) 就爲定值了,而後就能夠數論分塊了。code

大體分析一下複雜度,得總枚舉次數爲:get

\[\large \sum_{i=1}^{\sqrt n}\frac{\sqrt n}{i}\sqrt{\frac{\sqrt n}{i}}=n^{\frac{3}{4}}\sum_{i=1}^{\sqrt n}\frac{1}{i^{\frac{3}{2}}} \]

後一項爲黎曼函數 \(\zeta(x)\),當 \(x=\frac{3}{2}\) 時,其取值約爲 \(2.6\),所以複雜度爲 \(O(n^{\frac{3}{4}})\)it

#include<bits/stdc++.h>
#define maxn 47350
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
    x=0;char c=getchar();bool flag=false;
    while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
    while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
    if(flag)x=-x;
}
int n,m,tot;
ll ans;
int p[maxn],mu[maxn];
bool tag[maxn];
void init()
{
    mu[1]=1;
    for(int i=2;i<=m;++i)
    {
        if(!tag[i]) p[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot;++j)
        {
            int k=i*p[j];
            if(k>m) break;
            tag[k]=true;
            if(i%p[j]) mu[k]=mu[i]*mu[p[j]];
            else
            {
                mu[k]=0;
                break;
            }
        }
    }
}
ll calc(ll d)
{
    ll v=0;
    for(int i=2;i<=m/d;++i)
    {
        ll val=n/(d*d*i);
        if(!val) continue;
        for(int l=i+1,r;l<=2*i-1;l=r+1)
        {
            if(val/l==0) break;
            r=min(val/(val/l),(ll)2*i-1),v+=val/l*(r-l+1);
        }
    }
    return v;
}
int main()
{
    read(n),m=sqrt(n),init();
    for(int i=1;i<=m;++i)
        if(mu[i])
            ans+=mu[i]*calc(i);
    printf("%lld",ans);
    return 0;
}
相關文章
相關標籤/搜索