JavaShuo
欄目
標籤
(28)[AISTATS15] Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing
時間 2020-01-31
標籤
aistats15
aistats
joint
learning
words
meaning
representations
open
text
semantic
parsing
欄目
Microsoft Office
简体版
原文
原文鏈接
計劃完成深度學習入門的126篇論文第二十八篇,蒙特利爾大學的Bengio領導關於Joint Learning用於Open-Text研究語義分析及意義表示的論文。 ABSTRACT&INTRODUCTION 摘要 Open-text語義分析器(semantic parsers)的目的是經過推斷相應的語義表示(meaning representation)來解釋天然語言中的任何語句。不幸的是,因爲缺少
>>阅读原文<<
相關文章
1.
Distributed Representations of Words and Phrases and their Compositionality
2.
【論文筆記】Joint Unsupervised Learning of Deep Representations and Image Clusters
3.
Semantic Flow for Fast and Accurate Scene Parsing
4.
自監督學習(四)Joint Unsupervised Learning of Deep Representations and Image Clusters
5.
行人再識別:Joint Learning of Single-image and Cross-image Representations for Person Re-identification
6.
1607.CVPR-Joint Learning of Single-image and Cross-image Representations for Person ReID 論文筆記
7.
《Learning Semantic Concepts and Order for Image and Sentence Matching》
8.
論文筆記_2018-ECCV-Joint Task-Recursive Learning for Semantic Segmentation and Depth Estimation
9.
《Distributed Representations of Words and Phrases and their Compositionality》筆記
10.
【論文總結】weakly- and semi-supervised learning of a DCNN for semantic Image Segmentation
更多相關文章...
•
Scala for循環
-
Scala教程
•
W3C RDF and OWL 活動
-
W3C 教程
•
RxJava操作符(七)Conditional and Boolean
•
Composer 安裝與使用
相關標籤/搜索
for...of
for..of
representations
parsing
meaning
semantic
joint
words
learning
django+semantic
HTML
Microsoft Office
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
部署Hadoop(3.3.0)僞分佈式集羣
2.
從0開始搭建hadoop僞分佈式集羣(三:Zookeeper)
3.
centos7 vmware 搭建集羣
4.
jsp的page指令
5.
Sql Server 2008R2 安裝教程
6.
python:模塊導入import問題總結
7.
Java控制修飾符,子類與父類,組合重載覆蓋等問題
8.
(實測)Discuz修改論壇最後發表的帖子的鏈接爲靜態地址
9.
java參數傳遞時,究竟傳遞的是什麼
10.
Linux---文件查看(4)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Distributed Representations of Words and Phrases and their Compositionality
2.
【論文筆記】Joint Unsupervised Learning of Deep Representations and Image Clusters
3.
Semantic Flow for Fast and Accurate Scene Parsing
4.
自監督學習(四)Joint Unsupervised Learning of Deep Representations and Image Clusters
5.
行人再識別:Joint Learning of Single-image and Cross-image Representations for Person Re-identification
6.
1607.CVPR-Joint Learning of Single-image and Cross-image Representations for Person ReID 論文筆記
7.
《Learning Semantic Concepts and Order for Image and Sentence Matching》
8.
論文筆記_2018-ECCV-Joint Task-Recursive Learning for Semantic Segmentation and Depth Estimation
9.
《Distributed Representations of Words and Phrases and their Compositionality》筆記
10.
【論文總結】weakly- and semi-supervised learning of a DCNN for semantic Image Segmentation
>>更多相關文章<<