一 kafka consumer準備 html
前面的章節進行了分佈式job的自動計算的概念講解以及實踐。上次分佈式日誌說過日誌寫進kafka,是須要進行處理,以便合理的進行展現,分佈式日誌的量和咱們對日誌的重視程度,決定了咱們必需要有一個大數據檢索,和友好展現的需求。那麼天然就是elasticsearch和kibana,elasticsearch是能夠檢索TB級別數據的一個分佈式NOSQL數據庫,而kibana,不只僅能夠展現詳情,並且有針對不一樣展現需求的功能,而且定製了不少不少日誌格式的模板和採集數據的插件,這裏很少介紹了,我本身感受是比percona的pmm強大不少。git
書歸正傳,咱們這一節是要作同步前的準備工做。第一,對kafka的consumer進行封裝。第二,讀取kafka數據是須要一個後臺程序去處理,可是不須要job,咱們上次作的框架是基於zookeeper的分佈式job,而kafka的分佈式是在服務器端的,固然將job分佈式設計方案用在輪詢或者阻塞方式的後臺程序,也是能夠的,可是此次就不講解了。下面咱們就將kafka分佈式的原理分析下,kafka的客戶端有一個組的概念,borker端有一個topic的概念,product在發送消息的時候,會有一個key值。由於kafka存數據就是以key-value的方式存儲數據的,因此broker就是用product傳遞過來的這個key進行運算,合理的將數據存儲到某個topic的某個分區。而consumer端訂閱topic,能夠訂閱多個topic,它的分派是這樣的,每個topic下的分區會有多個consuer,可是這些consumer必須屬於不一樣的組,而每個consumer能夠訂閱多個topic下的分區,可是不能重複。下面看圖吧,以咱們此次實際的日誌爲例,在kafka中mylog topic有5個分區。github
那麼若是咱們有三個程序須要用這個mylog topic怎麼辦?並且咱們須要很快的處理完這個數據,因此有可能這三個程序每個程序都要兩臺服務器。想着都很頭大,對吧?固然若是有咱們前面講解的分佈式job也能夠處理,可是要把分佈式的功能遷移到這個後臺程序,避免不了又大動干戈,開發,調試,測試,修改bug,直到程序穩定,那又是一場苦功。可是在kafka這裏,不用擔憂,三個程序,好比訂單,庫存,顧客,咱們爲這三個程序的kafka客戶端對應的設置爲三個組,每個組中consumer數量只要不超過5個,假如訂單須要用到名爲mylog的topic的消息,只要訂單處理這個topic的實例數量,必須不能超過5個,固然能夠少於5個,也能夠等於0個。而同時一個consumer又能夠去訂閱多個topic,這也是kafka能夠媲美rabbit的重要的一個緣由,先天支持併發和擴展。咱們看圖:redis
若是一個組的consumer數量沒有topic的分區多,kafka會自動分派給這個組的consumer,若是某一個consumer失敗,kafka也會自動的將這個consumer的offset記錄而且分派給另一個consumer。數據庫
可是要注意一點,kafka的topic中的每一個分區是線性的,可是全部的分區看起來就不會是線性的,若是須要topic是線性的,就必須將分區設置爲1個。json
下面看看咱們封裝的kafka客戶端方法:bootstrap
using System; using System.Collections.Generic; using System.Threading.Tasks; using Confluent.Kafka; using Microsoft.Extensions.Options; namespace Walt.Framework.Service.Kafka { public class KafkaService : IKafkaService { private KafkaOptions _kafkaOptions; private Producer _producer; private Consumer _consumer; public Action<Message> GetMessageDele{ get; set; } public Action<Error> ErrorDele{ get; set; } public Action<LogMessage> LogDele{ get; set; } public KafkaService(IOptionsMonitor<KafkaOptions> kafkaOptions) { _kafkaOptions=kafkaOptions.CurrentValue; kafkaOptions.OnChange((kafkaOpt,s)=>{ _kafkaOptions=kafkaOpt; System.Diagnostics.Debug .WriteLine(Newtonsoft.Json.JsonConvert.SerializeObject(kafkaOpt)+"---"+s); }); _producer=new Producer(_kafkaOptions.Properties); _consumer=new Consumer(_kafkaOptions.Properties); } private byte[] ConvertToByte(string str) { return System.Text.Encoding.Default.GetBytes(str); } public async Task<Message> Producer<T>(string topic,string key,T t) { if(string.IsNullOrEmpty(topic) || t==null) { throw new ArgumentNullException("topic或者value不能爲null."); } string data = Newtonsoft.Json.JsonConvert.SerializeObject(t); var task= await _producer.ProduceAsync(topic,ConvertToByte(key),ConvertToByte(data)); return task; } public void AddProductEvent() { _producer.OnError+=new EventHandler<Error>(Error); _producer.OnLog+=new EventHandler<LogMessage>(Log); } ///以事件的方式獲取message public void AddConsumerEvent(IEnumerable<string> topics) { _consumer.Subscribe(topics); _consumer.OnMessage += new EventHandler<Message>(GetMessage); _consumer.OnError += new EventHandler<Error>(Error); _consumer.OnLog += new EventHandler<LogMessage>(Log); } private void GetMessage(object sender, Message mess) { if(GetMessageDele!=null) { GetMessageDele(mess); } } private void Error(object sender, Error mess) { if(ErrorDele!=null) { ErrorDele(mess); } } private void Log(object sender, LogMessage mess) { if(LogDele!=null) { LogDele(mess); } } //以輪詢的方式獲取message public Message Poll(int timeoutMilliseconds) { Message message =default(Message); _consumer.Consume(out message, timeoutMilliseconds); return message; } } }
以事件激發的方式,由於是線程安全的方式調用,而本實例是後臺方式執行,少不了多線程,因此仍是以輪詢的方式。以輪詢的方式,這樣的程序須要放那塊尼?就是咱們的後臺程序框架。api
二 後臺程序管理框架開發 安全
他的原理和job幾乎差很少,比job要簡單多了。看入口程序:服務器
using System; using System.Collections.Generic; using System.Collections.ObjectModel; using System.IO; using System.Linq; using System.Reflection; using System.Threading.Tasks; using Microsoft.AspNetCore; using Microsoft.AspNetCore.Hosting; using Microsoft.Extensions.Configuration; using Microsoft.Extensions.DependencyInjection; using Microsoft.Extensions.Hosting; using Microsoft.Extensions.Logging; using EnvironmentName = Microsoft.Extensions.Hosting.EnvironmentName; using Walt.Framework.Log; using Walt.Framework.Service; using Walt.Framework.Service.Kafka; using Walt.Framework.Configuration; using MySql.Data.EntityFrameworkCore; using Microsoft.EntityFrameworkCore; using System.Threading; using IApplicationLife =Microsoft.Extensions.Hosting; using IApplicationLifetime = Microsoft.Extensions.Hosting.IApplicationLifetime; namespace Walt.Framework.Console { public class Program { public static void Main(string[] args) { //這裏獲取程序及和工做線程配置信息 Dictionary<string, Assembly> assmblyColl = new Dictionary<string, Assembly>(); var host = new HostBuilder() .UseEnvironment(EnvironmentName.Development) .ConfigureAppConfiguration((hostContext, configApp) => { //這裏netcore支持多數據源,因此能夠擴展到數據庫或者redis,集中進行配置。 // configApp.SetBasePath(Directory.GetCurrentDirectory()); configApp.AddJsonFile( $"appsettings.{hostContext.HostingEnvironment.EnvironmentName}.json", optional: true); configApp.AddEnvironmentVariables("PREFIX_"); configApp.AddCommandLine(args); }).ConfigureLogging((hostContext, configBuild) => { configBuild.AddConfiguration(hostContext.Configuration.GetSection("Logging")); configBuild.AddConsole(); configBuild.AddCustomizationLogger(); }) .ConfigureServices((hostContext, service) => { service.Configure<HostOptions>(option => { option.ShutdownTimeout = System.TimeSpan.FromSeconds(10); }); service.AddKafka(KafkaBuilder => { KafkaBuilder.AddConfiguration(hostContext.Configuration.GetSection("KafkaService")); }); service.AddElasticsearchClient(config=>{ config.AddConfiguration(hostContext.Configuration.GetSection("ElasticsearchService")); }); service.AddDbContext<ConsoleDbContext>(option => option.UseMySQL(hostContext.Configuration.GetConnectionString("ConsoleDatabase")), ServiceLifetime.Transient, ServiceLifetime.Transient); ///TODO 待實現從數據庫中pull數據,再將任務添加進DI service.AddSingleton<IConsole,KafkaToElasticsearch>(); }) .Build(); CancellationTokenSource source = new CancellationTokenSource(); CancellationToken token = source.Token; var task=Task.Run(async () =>{ IConsole console = host.Services.GetService<IConsole>(); await console.AsyncExcute(source.Token); },source.Token); Dictionary<string, Task> dictTask = new Dictionary<string, Task>(); dictTask.Add("kafkatoelasticsearch", task); int recordRunCount = 0; var fact = host.Services.GetService<ILoggerFactory>(); var log = fact.CreateLogger<Program>(); var disp = Task.Run(() => { while (true) { if (!token.IsCancellationRequested) { ++recordRunCount; foreach (KeyValuePair<string, Task> item in dictTask) { if (item.Value.IsCanceled || item.Value.IsCompleted || item.Value.IsCompletedSuccessfully || item.Value.IsFaulted) { log.LogWarning("console任務:{0},參數:{1},執行異常,task狀態:{2}", item.Key, "", item.Value.Status); if (item.Value.Exception != null) { log.LogError(item.Value.Exception, "task:{0},參數:{1},執行錯誤.", item.Key, ""); //TODO 根據參數更新數據庫狀態,以便被監控到。 } //更新數據庫狀態。 } } } System.Threading.Thread.Sleep(2000); log.LogInformation("循環:{0}次,接下來等待2秒。", recordRunCount); } },source.Token); IApplicationLifetime appLiftTime = host.Services.GetService<IApplicationLifetime>(); appLiftTime.ApplicationStopping.Register(()=>{ log.LogInformation("程序中止中。"); source.Cancel(); log.LogInformation("程序中止完成。"); }); host.RunAsync().GetAwaiter().GetResult(); } } }
由於分佈式job有quartz,是有本身的設計理念,可是這個console後臺框架不須要,是本身開發,因此徹底和Host通用主機兼容,全部的部件均可以DI。設計原理就是以數據庫的配置,構造Task,而後使用
CancellationTokenSource和TaskCompletionSource去管理Task。運行結果根據狀態去更新數據庫,以便監控。固然我們這個例子功能沒實現全,後面能夠完善
,感興趣的能夠去個人github上pull代碼。我們看任務中的例子代碼:
using System.Collections.Generic; using System.Threading; using System.Threading.Tasks; using Confluent.Kafka; using Microsoft.Extensions.Configuration; using Microsoft.Extensions.Logging; using Nest; using Walt.Framework.Log; using Walt.Framework.Service.Elasticsearch; using Walt.Framework.Service.Kafka; namespace Walt.Framework.Console { public class KafkaToElasticsearch : IConsole { ILoggerFactory _logFact; IConfiguration _config; IElasticsearchService _elasticsearch; IKafkaService _kafkaService; public KafkaToElasticsearch(ILoggerFactory logFact,IConfiguration config ,IElasticsearchService elasticsearch ,IKafkaService kafkaService) { _logFact = logFact; _config = config; _elasticsearch = elasticsearch; _kafkaService = kafkaService; } public async Task AsyncExcute(CancellationToken cancel=default(CancellationToken)) { var log = _logFact.CreateLogger<KafkaToElasticsearch>(); _kafkaService.AddConsumerEvent(new List<string>(){"mylog"});
//以事件方式獲取message不工做,由於跨線程 // _kafkaService.GetMessageDele = (message) => { // var id = message.Key; // var offset = string.Format("{0}---{2}",message.Offset.IsSpecial,message.Offset.Value); // var topic = message.Topic; // var topicPartition = message.TopicPartition.Partition.ToString(); // var topicPartitionOffsetValue = message.TopicPartitionOffset.Offset.Value; // // log.LogInformation("id:{0},offset:{1},topic:{2},topicpatiton:{3},topicPartitionOffsetValue:{4}" // // ,id,offset,topic,topicPartition,topicPartitionOffsetValue); // }; // _kafkaService.ErrorDele = (message) => { // log.LogError(message.ToString()); // }; // _kafkaService.LogDele = (message) => { // log.LogInformation(message.ToString()); // }; // log.LogInformation("事件添加完畢"); // var waitForStop = // new TaskCompletionSource<object>(TaskCreationOptions.RunContinuationsAsynchronously); // cancel.Register(()=>{ // log.LogInformation("task執行被取消回掉函數"); // waitForStop.SetResult(null); // }); // waitForStop.Task.Wait(); // log.LogInformation("任務已經被取消。");
//下面以輪詢方式。 if(!cancel.IsCancellationRequested) { while (true) { Message message = _kafkaService.Poll(2000); if (message != null) { if(message.Error!=null&&message.Error.Code!=ErrorCode.NoError) { //log.LogError("consumer獲取message出錯,詳細信息:{0}",message.Error); System.Console.WriteLine("consumer獲取message出錯,詳細信息:{0}",message.Error); System.Threading.Thread.Sleep(200); continue; } var id =message.Key==null?"":System.Text.Encoding.Default.GetString(message.Key); var offset = string.Format("{0}---{1}", message.Offset.IsSpecial, message.Offset.Value); var topic = message.Topic; var topicPartition = message.TopicPartition.Partition.ToString(); var topicPartitionOffsetValue = message.TopicPartitionOffset.Offset.Value; var val =System.Text.Encoding.Default.GetString( message.Value); EntityMessages entityMess = Newtonsoft.Json.JsonConvert.DeserializeObject<EntityMessages>(val); await _elasticsearch.CreateIndexIfNoExists<LogElasticsearch>("mylog"+entityMess.OtherFlag); // _elasticsearch.CreateMappingIfNoExists<LogElasticsearch>("mylog"+entityMess.OtherFlag // ,"mylog"+entityMess.OtherFlag+"type",null);
//爲elasticsearch添加document var addDocumentResponse = await _elasticsearch.CreateDocument<LogElasticsearch>("mylog" + entityMess.OtherFlag , new LogElasticsearch() { Id = entityMess.Id, Time = entityMess.DateTime, LogLevel = entityMess.LogLevel, Exception = entityMess.Message } ); if (addDocumentResponse != null) { if (!addDocumentResponse.ApiCall.Success) { } } } } } return ; } } }
三 elasticsearch 服務開發
服務已經開發不少了,主要就是構建和配置的設計,還有就是對組件的封裝,看程序結構:
配置:
{ "Logging": { "LogLevel": { "Default": "Information", "System": "Information", "Microsoft": "Information" }, "KafkaLog":{ "Prix":"console", //目前這個屬性,能夠放程序類別,好比用戶中心,商品等。 "LogStoreTopic":"mylog" } }, "KafkaService":{ "Properties":{ "bootstrap.servers":"192.168.249.106:9092", "group.id":"group2" } }, "ConnectionStrings": { "ConsoleDatabase":"Server=192.168.249.106;Database=quartz;Uid=quartz;Pwd=quartz" }, "ElasticsearchService":{ "Host":["http://192.168.249.105:9200","http://localhost:9200"], "TimeOut":"10000", "User":"", "Pass":"" } }
服務類:這裏有必要說下,elasticsearch是基於api的接口,最底層就是http請求,在接口上,實現了一個高級的接口和一個低級別的接口,固然低級別的接口須要熟悉elasticsearch的協議,
而高級別的api,使用強類型去使用,對開發頗有幫助。下面是封裝elasticsearch的服務類:
using System; using System.Net.Http; using Elasticsearch.Net; using Microsoft.Extensions.Options; using System.Threading.Tasks; using Microsoft.Extensions.Logging; using Nest; namespace Walt.Framework.Service.Elasticsearch { public class ElasticsearchService:IElasticsearchService { private ElasticsearchOptions _elasticsearchOptions=null; private ElasticClient _elasticClient = null; private ILoggerFactory _loggerFac; public ElasticsearchService(IOptionsMonitor<ElasticsearchOptions> options ,ILoggerFactory loggerFac) { _elasticsearchOptions = options.CurrentValue; options.OnChange((elasticsearchOpt,s)=>{ _elasticsearchOptions=elasticsearchOpt; System.Diagnostics.Debug .WriteLine(Newtonsoft.Json.JsonConvert.SerializeObject(elasticsearchOpt)+"---"+s); }); //鏈接客戶端需,支持多個節點,防止單點故障 var lowlevelClient = new ElasticLowLevelClient(); var urlColl = new Uri[_elasticsearchOptions.Host.Length]; for (int i = 0; i < _elasticsearchOptions.Host.Length;i++) { urlColl[i] = new Uri(_elasticsearchOptions.Host[i]); } _loggerFac = loggerFac; var connectionPool = new SniffingConnectionPool(urlColl); var settings = new ConnectionSettings(connectionPool) .RequestTimeout(TimeSpan.FromMinutes(_elasticsearchOptions.TimeOut)) .DefaultIndex("mylogjob");//設置默認的index _elasticClient = new ElasticClient(settings); }
//若是index存在,則返回,若是不存在,則建立,type的建立方式是爲文檔類型打標籤ElasticsearchTypeAttribute
public async Task<bool> CreateIndexIfNoExists<T>(string indexName) where T : class { var log = _loggerFac.CreateLogger<ElasticsearchService>(); var exists = await _elasticClient.IndexExistsAsync(Indices.Index(indexName)); if (exists.Exists) { log.LogWarning("index:{0}已經存在", indexName.ToString()); return await Task.FromResult(true); } var response = await _elasticClient.CreateIndexAsync(indexName ,c=>c.Mappings(mm=>mm.Map<T>(m=>m.AutoMap())));//將類型的屬性自動映射到index的type上,也能夠打標籤控制那個能夠映射,那些不能夠 log.LogInformation(response.DebugInformation); if (response.Acknowledged) { log.LogInformation("index:{0},建立成功", indexName.ToString()); return await Task.FromResult(false); } else { log.LogError(response.ServerError.ToString()); log.LogError(response.OriginalException.ToString()); return await Task.FromResult(false); } } //建立document public async Task<ICreateResponse> CreateDocument<T>(string indexName,T t) where T:class { var log=_loggerFac.CreateLogger<ElasticsearchService>(); if(t==null) { log.LogError("bulk 參數不能爲空。"); return null; } IndexRequest<T> request = new IndexRequest<T>(indexName, TypeName.From<T>()) { Document = t }; var createResponse = await _elasticClient.CreateDocumentAsync<T>(t); log.LogInformation(createResponse.DebugInformation); if (createResponse.ApiCall.Success) { log.LogInformation("index:{0},type:{1},建立成功", createResponse.Index, createResponse.Type); return createResponse; } else { log.LogError(createResponse.ServerError.ToString()); log.LogError(createResponse.OriginalException.ToString()); return null; } } } }
poco類型,這個類會和index的typ相關聯的:
using System; using Nest; namespace Walt.Framework.Console { [ElasticsearchTypeAttribute(Name="LogElasticsearchDefaultType")] //可使用類型生成和查找type public class LogElasticsearch { public string Id { get; set; } public DateTime Time { get; set; } public string LogLevel{ get; set; } public string Exception{ get; set; } public string Mess{ get; set; } } }
而後就是執行咱們console後臺程序,就能夠在kibana看到日誌被同步的狀況:
全部程序都提交到github,若是調試代碼,再看這篇文章,或許理解能更快。