下載Eclipse,解壓安裝,例如安裝到/usr/local,即/usr/local/eclipse java
4.3.1版本下載地址:http://pan.baidu.com/s/1eQkpRguapache
一、下載hadoop插件app
下載地址:http://pan.baidu.com/s/1mgiHFokeclipse
此zip文件包含了源碼,咱們使用使用編譯好的jar便可,解壓後,release文件夾中的hadoop.eclipse-kepler-plugin-2.2.0.jar就是編譯好的插件。oop
二、把插件放到eclipse/plugins目錄下spa
三、重啓eclipse,配置Hadoop installation directory 插件
若是插件安裝成功,打開Windows—Preferences後,在窗口左側會有Hadoop Map/Reduce選項,點擊此選項,在窗口右側設置Hadoop安裝路徑。3d
四、配置Map/Reduce Locationscode
打開Windows—Open Perspective—Other orm
選擇Map/Reduce,點擊OK
在右下方看到以下圖所示
點擊Map/Reduce Location選項卡,點擊右邊小象圖標,打開Hadoop Location配置窗口:
輸入Location Name,任意名稱便可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成與core-site.xml的設置一致便可。
點擊"Finish"按鈕,關閉窗口。
點擊左側的DFSLocations—>myhadoop(上一步配置的location name),如能看到user,表示安裝成功
若是以下圖所示表示安裝失敗,請檢查Hadoop是否啓動,以及eclipse配置是否正確。
File—>Project,選擇Map/Reduce Project,輸入項目名稱WordCount等。
在WordCount項目裏新建class,名稱爲WordCount,代碼以下:
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
一、在HDFS上建立目錄input
hadoop fs -mkdir input
二、拷貝本地README.txt到HDFS的input裏
hadoop fs -copyFromLocal /usr/local/hadoop/README.txt input
三、點擊WordCount.java,右鍵,點擊Run As—>Run Configurations,配置運行參數,即輸入和輸出文件夾
hdfs://localhost:9000/user/hadoop/input hdfs://localhost:9000/user/hadoop/output
點擊Run按鈕,運行程序。
四、運行完成後,查看運行結果
方法1:
hadoop fs -ls output
能夠看到有兩個輸出結果,_SUCCESS和part-r-00000
執行hadoop fs -cat output/*
方法2:
展開DFS Locations,以下圖所示,雙擊打開part-r00000查看結果