Eclipse下搭建Hadoop2.4.0開發環境

1、安裝Eclipse

    下載Eclipse,解壓安裝,例如安裝到/usr/local,即/usr/local/eclipse java

    4.3.1版本下載地址:http://pan.baidu.com/s/1eQkpRguapache

2、在eclipse上安裝hadoop插件

    一、下載hadoop插件app

        下載地址:http://pan.baidu.com/s/1mgiHFokeclipse

     此zip文件包含了源碼,咱們使用使用編譯好的jar便可,解壓後,release文件夾中的hadoop.eclipse-kepler-plugin-2.2.0.jar就是編譯好的插件。oop

 

   二、把插件放到eclipse/plugins目錄下spa

 

    三、重啓eclipse,配置Hadoop installation directory    插件

     若是插件安裝成功,打開Windows—Preferences後,在窗口左側會有Hadoop Map/Reduce選項,點擊此選項,在窗口右側設置Hadoop安裝路徑。3d

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

四、配置Map/Reduce Locationscode

     打開Windows—Open Perspective—Other orm

 

 

 

 

 

 

 

 

 

 

 

 

 

    

    選擇Map/Reduce,點擊OK

    

    在右下方看到以下圖所示

    

 

點擊Map/Reduce Location選項卡,點擊右邊小象圖標,打開Hadoop Location配置窗口:

    輸入Location Name,任意名稱便可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成與core-site.xml的設置一致便可。

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

點擊"Finish"按鈕,關閉窗口。

 點擊左側的DFSLocations—>myhadoop(上一步配置的location name),如能看到user,表示安裝成功

   

      

      

 

 

 

 

 

 

 

 

 

    若是以下圖所示表示安裝失敗,請檢查Hadoop是否啓動,以及eclipse配置是否正確。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3、新建WordCount項目

    File—>Project,選擇Map/Reduce Project,輸入項目名稱WordCount等。

    在WordCount項目裏新建class,名稱爲WordCount,代碼以下:

    

import java.io.IOException;

import java.util.StringTokenizer;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

 

public class WordCount {

 

public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ 

  private final static IntWritable one = new IntWritable(1);

  private Text word = new Text();

 

  public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

    StringTokenizer itr = new StringTokenizer(value.toString());

      while (itr.hasMoreTokens()) {

        word.set(itr.nextToken());

        context.write(word, one);

      }

  }

}

 

public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {

  private IntWritable result = new IntWritable(); 

  public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {

    int sum = 0;

    for (IntWritable val : values) {

      sum += val.get();

    }

    result.set(sum);

    context.write(key, result);

  }

}

 

public static void main(String[] args) throws Exception {

  Configuration conf = new Configuration();

  String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

  if (otherArgs.length != 2) {

    System.err.println("Usage: wordcount <in> <out>");

    System.exit(2);

  }

  Job job = new Job(conf, "word count");

  job.setJarByClass(WordCount.class);

  job.setMapperClass(TokenizerMapper.class);

  job.setCombinerClass(IntSumReducer.class);

  job.setReducerClass(IntSumReducer.class);

  job.setOutputKeyClass(Text.class);

  job.setOutputValueClass(IntWritable.class);

  FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

  FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

  System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

 

 

4、運行

    一、在HDFS上建立目錄input

        hadoop fs -mkdir input

    二、拷貝本地README.txt到HDFS的input裏

         hadoop fs -copyFromLocal /usr/local/hadoop/README.txt input

    三、點擊WordCount.java,右鍵,點擊Run As—>Run Configurations,配置運行參數,即輸入和輸出文件夾

  hdfs://localhost:9000/user/hadoop/input hdfs://localhost:9000/user/hadoop/output

 

    

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  點擊Run按鈕,運行程序。

 

    四、運行完成後,查看運行結果        

        方法1:

 

        hadoop fs -ls output

        能夠看到有兩個輸出結果,_SUCCESS和part-r-00000

        執行hadoop fs -cat output/*

        

        

        方法2:

        展開DFS Locations,以下圖所示,雙擊打開part-r00000查看結果

    

相關文章
相關標籤/搜索