在爲數據分類訓練分類器的時候,好比貓狗分類時,咱們常常會使用pytorch的ImageFolder:html
CLASS torchvision.datasets.ImageFolder(root, transform=None, target_transform=None, loader=<function default_loader>, is_valid_file=None)
使用可見pytorch torchvision.ImageFolder的使用web
這裏想實現的是若是想要覆寫該函數,即能使用它的特性,又能夠實現本身的功能app
首先先分析下其源代碼:dom
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', 'webp'] class ImageFolder(DatasetFolder): """A generic data loader where the images are arranged in this way: :: root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/asd932_.png Args: root (string): Root directory path. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. Attributes: classes (list): List of the class names. class_to_idx (dict): Dict with items (class_name, class_index). imgs (list): List of (image path, class_index) tuples """ def __init__(self, root, transform=None, target_transform=None, loader=default_loader): super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS, transform=transform, target_transform=target_transform) self.imgs = self.samples
ImageFolder的代碼很簡單,主要是繼承了DatasetFolder:函數
def has_file_allowed_extension(filename, extensions): """查看文件是不是支持的可擴展類型 Args: filename (string): 文件路徑 extensions (iterable of strings): 可擴展類型列表,即能接受的圖像文件類型 Returns: bool: True if the filename ends with one of given extensions """ filename_lower = filename.lower() return any(filename_lower.endswith(ext) for ext in extensions) # 返回True或False列表 def make_dataset(dir, class_to_idx, extensions): """ 返回形如[(圖像路徑, 該圖像對應的類別索引值),(),...] """ images = [] dir = os.path.expanduser(dir) for target in sorted(class_to_idx.keys()): d = os.path.join(dir, target) if not os.path.isdir(d): continue for root, _, fnames in sorted(os.walk(d)): #層層遍歷文件夾,返回當前文件夾路徑,存在的全部文件夾名,存在的全部文件名 for fname in sorted(fnames): if has_file_allowed_extension(fname, extensions):查看文件是不是支持的可擴展類型,是則繼續 path = os.path.join(root, fname) item = (path, class_to_idx[target]) images.append(item) return images class DatasetFolder(data.Dataset): """A generic data loader where the samples are arranged in this way: :: root/class_x/xxx.ext root/class_x/xxy.ext root/class_x/xxz.ext root/class_y/123.ext root/class_y/nsdf3.ext root/class_y/asd932_.ext Args: root (string): 根目錄路徑 loader (callable): 根據給定的路徑來加載樣本的可調用函數 extensions (list[string]): 可擴展類型列表,即能接受的圖像文件類型. transform (callable, optional): 用於樣本的transform函數,而後返回樣本transform後的版本 E.g, ``transforms.RandomCrop`` for images. target_transform (callable, optional): 用於樣本標籤的transform函數 Attributes: classes (list): 類別名列表 class_to_idx (dict): 項目(class_name, class_index)字典,如{'cat': 0, 'dog': 1} samples (list): (sample path, class_index) 元組列表,即(樣本路徑, 類別索引) targets (list): 在數據集中每張圖片的類索引值,爲列表 """ def __init__(self, root, loader, extensions, transform=None, target_transform=None): classes, class_to_idx = self._find_classes(root) # 獲得類名和類索引,如['cat', 'dog']和{'cat': 0, 'dog': 1} # 返回形如[(圖像路徑, 該圖像對應的類別索引值),(),...],即對每一個圖像進行標記 samples = make_dataset(root, class_to_idx, extensions) if len(samples) == 0: raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n" "Supported extensions are: " + ",".join(extensions))) self.root = root self.loader = loader self.extensions = extensions self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.targets = [s[1] for s in samples] #全部圖像的類索引值組成的列表 self.transform = transform self.target_transform = target_transform def _find_classes(self, dir): """ 在數據集中查找類文件夾。 Args: dir (string): 根目錄路徑 Returns: 返回元組: (classes, class_to_idx)即(類名, 類索引),其中classes即相應的目錄名,如['cat', 'dog'];class_to_idx爲形如{類名:類索引}的字典,如{'cat': 0, 'dog': 1}. Ensures: 保證沒有類名是另外一個類目錄的子目錄 """ if sys.version_info >= (3, 5): # Faster and available in Python 3.5 and above classes = [d.name for d in os.scandir(dir) if d.is_dir()] #得到根目錄dir的全部第一層子目錄名 else: classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] #效果和上面的同樣,只是版本不一樣方法不一樣 classes.sort() #而後對類名進行排序 class_to_idx = {classes[i]: i for i in range(len(classes))} #而後將類名和索引值一一對應的到相應字典,如{'cat': 0, 'dog': 1} return classes, class_to_idx #而後返回類名和類索引 def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ path, target = self.samples[index] sample = self.loader(path) # 加載圖片 if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self): return len(self.samples) def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str
此時想要覆寫ImageFolder,代碼爲:ui
class CustomImageFolder(ImageFolder): """ 爲了獲得兩張圖(其中一張是隨機選取的)的圖像和索引值信息 """ def __init__(self, root, transform=None): super(CustomImageFolder, self).__init__(root, transform) self.indices = range(len(self)) #該文件夾中的長度 def __getitem__(self, index1): index2 = random.choice(self.indices) #從[0,indices]中隨機抽取一個數字,爲了隨機選取一張圖 path1 = self.imgs[index1][0] #此時的self.imgs等於self.samples,即內容爲[(圖像路徑, 該圖像對應的類別索引值),(),...] label1 = self.imgs[index1][1] path2 = self.imgs[index2][0] label2 = self.imgs[index2][1] img1 = self.loader(path1) img2 = self.loader(path2) if self.transform is not None: img1 = self.transform(img1) img2 = self.transform(img2) return img1, img2, label1, label2