Hadoop綜合大做業

Hadoop綜合大做業 要求:php

  1. 用Hive對爬蟲大做業產生的文本文件(或者英文詞頻統計下載的英文長篇小說)詞頻統計。html

  2. 用Hive對爬蟲大做業產生的csv文件進行數據分析python

1. 用Hive對爬蟲大做業產生的文本文件

這裏的具體操做步驟以下:shell

  • 將網頁上的歌詞段落爬取下來
  • 經過jieba分詞後將結果用txt文件保存,
  • 將txt文件放入Hadoop分佈式文件系統
  • 使用hive將文件做爲表數據導入
  • 使用hive查詢統計歌詞中單詞的出現次數

首先,Python爬蟲程序代碼以下:數據庫

import jieba
import requests
from bs4 import BeautifulSoup


lyrics = ''
headers = {
    'User-Agent': 'User-Agent:*/*'
}

resp = requests.get('http://www.juzimi.com/writer/%E6%96%B9%E6%96%87%E5%B1%B1', headers=headers)
resp.encoding = 'UTF-8'
print(resp.status_code)
soup = BeautifulSoup(resp.text, 'html.parser')

page_url = 'http://www.juzimi.com/writer/%E6%96%B9%E6%96%87%E5%B1%B1?page={}'
page_last = soup.select('.pager-last')
if len(page_last) > 0:
    page_last = page_last[0].text

for i in range(0, int(page_last)):
    print(i)
    resp = requests.get(page_url.format(i), headers=headers)
    resp.encoding = 'UTF-8'
    soup = BeautifulSoup(resp.text, 'html.parser')
    for a in soup.select('.xlistju'):
        lyrics += a.text + ' '

# 保留爬取的句子
with open('lyrics.txt', 'a+', encoding='UTF-8') as lyricFile:
    lyricFile.write(lyrics)

# 加載標點符號並去除歌詞中的標點
with open('punctuation.txt', 'r', encoding='UTF-8') as punctuationFile:
    for punctuation in punctuationFile.readlines():
        lyrics = lyrics.replace(punctuation[0], ' ')

# 加載無心義詞彙
with open('meaningless.txt', 'r', encoding='UTF-8') as meaninglessFile:
    mLessSet = set(meaninglessFile.read().split('\n'))
mLessSet.add(' ')

# 加載保留字
with open('reservedWord.txt', 'r', encoding='UTF-8') as reservedWordFile:
    reservedWordSet = set(reservedWordFile.read().split('\n'))
    for reservedWord in reservedWordSet:
        jieba.add_word(reservedWord)

keywordList = list(jieba.cut(lyrics))
keywordSet = set(keywordList) - mLessSet  # 將無心義詞從詞語集合中刪除
keywordDict = {}

# 統計出詞頻字典
for word in keywordSet:
    keywordDict[word] = keywordList.count(word)

# 對詞頻進行排序
keywordListSorted = list(keywordDict.items())
keywordListSorted.sort(key=lambda e: e[1], reverse=True)
# 將全部詞頻寫出到txt
for topWordTup in keywordListSorted:
    print(topWordTup)
    with open('word.txt', 'a+', encoding='UTF-8') as wordFile:
        for i in range(0, topWordTup[1]):
            wordFile.write(topWordTup[0]+'\n')

如今將word.txt放入HDFS中並用hive查詢統計,命令以下:api

hdfs dfs -mkdir temp
hdfs dfs -put news.csv temp
hive

hive>
    create database db_temp;
    use db_temp;
    create table tb_word(word string);
    load data inpath '/user/hadoop/temp/word.txt' into table tb_word;
    select word, count(1) as num from tb_word group by word order by num desc limit 50;

以上的運行結果截圖以下:app

這裏寫圖片描述

2. 用Hive對爬蟲大做業產生的csv文件進行數據分析

我這裏選擇了爬取校園新聞並生產csv文件來分析,首先編寫爬蟲,主要代碼以下:less

import requests
from bs4 import BeautifulSoup
from datetime import datetime
import re
import pandas

news_list = []


def crawlOnePageSchoolNews(page_url):
    res0 = requests.get(page_url)
    res0.encoding = 'UTF-8'
    soup0 = BeautifulSoup(res0.text, 'html.parser')
    news = soup0.select('.news-list > li')

    for n in news:
        # print(n)
        print('**' * 5 + '列表頁信息' + '**' * 10)
        print('新聞連接:' + n.a.attrs['href'])
        print('新聞標題:' + n.select('.news-list-title')[0].text)
        print('新聞描述:' + n.a.select('.news-list-description')[0].text)
        print('新聞時間:' + n.a.select('.news-list-info > span')[0].text)
        print('新聞來源:' + n.a.select('.news-list-info > span')[1].text)
        news_list.append(getNewDetail(n.a.attrs['href']))
    return news_list


def getNewDetail(href):
    print('**' * 5 + '詳情頁信息' + '**' * 10)
    print(href)
    res1 = requests.get(href)
    res1.encoding = 'UTF-8'
    soup1 = BeautifulSoup(res1.text, 'html.parser')
    news = {}
    if soup1.select('#content'):
        news_content = soup1.select('#content')[0].text
        news['content'] = news_content.replace('\n', ' ').replace('\r', ' ').replace(',', '·')
        print(news_content)  # 文章內容
    else:
        news['content'] = ''
    if soup1.select('.show-info'):  # 防止以前網頁沒有show_info
        news_info = soup1.select('.show-info')[0].text
    else:
        return news
    info_list = ['來源', '發佈時間', '點擊', '做者', '審覈', '攝影']  # 須要解析的字段
    news_info_set = set(news_info.split('\xa0')) - {' ', ''}  # 網頁中的 獲取後會解析成\xa0,因此可使用\xa0做爲分隔符
    # 循環打印文章信息
    for n_i in news_info_set:
        for info_flag in info_list:
            if n_i.find(info_flag) != -1:  # 由於時間的冒號採用了英文符因此要進行判斷
                if info_flag == '發佈時間':
                    # 將發佈時間字符串轉爲datetime格式,方便往後存儲到數據庫
                    release_time = datetime.strptime(n_i[n_i.index(':') + 1:], '%Y-%m-%d %H:%M:%S ')
                    news[info_flag] = release_time
                    print(info_flag + ':', release_time)
                elif info_flag == '點擊':  # 點擊次數是經過文章id訪問php後使用js寫入,因此這裏單獨處理
                    news[info_flag] = getClickCount(href)
                else:
                    news[info_flag] = n_i[n_i.index(':') + 1:].replace(',', '·')
                    print(info_flag + ':' + n_i[n_i.index(':') + 1:])
    print('————' * 40)
    return news


def getClickCount(news_url):
    click_num_url = 'http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'
    click_num_url = click_num_url.format(re.search('_(.*)/(.*).html', news_url).group(2))
    res2 = requests.get(click_num_url)
    res2.encoding = 'UTF-8'
    click_num = re.search("\$\('#hits'\).html\('(\d*)'\)", res2.text).group(1)
    print('點擊:' + click_num)
    return click_num


print(crawlOnePageSchoolNews('http://news.gzcc.cn/html/xiaoyuanxinwen/'))

pageURL = 'http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'
res = requests.get('http://news.gzcc.cn/html/xiaoyuanxinwen/')
res.encoding = 'UTF-8'
soup = BeautifulSoup(res.text, 'html.parser')
newsSum = int(re.search('(\d*)條', soup.select('a.a1')[0].text).group(1))
if newsSum % 10:
    pageSum = int(newsSum / 10) + 1
else:
    pageSum = int(newsSum / 10)

for i in range(2, pageSum + 1):
    crawlOnePageSchoolNews(pageURL.format(i))

# with open('news.txt', 'w') as file:
#     file.write()


dit = pandas.DataFrame(news_list)
dit.to_csv('news.csv')
print(dit)

由於csv是用逗號分隔,而文章內容有逗號和換行符容易形成影響,因此在爬取數據時作了相應處理,將換行逗號等使用其餘代替。爬取後將文件放入HDFS系統,並將第一行的數據刪除,這裏使用insert語句覆蓋原先導入的表便可,而後經過hive查詢作出相應操做分析文章做者在何時發表的量比較多。分佈式

hdfs dfs -put  news.csv temp/
hive

hive>
create table tb_news(id string, content string, author string, publish timestamp, verify string, photo string, source string, click int)row format delimited fields terminated by ',';

load data inpath '/user/hadoop/temp/news.csv' overwrite into table tb_news;

insert overwrite table tb_news select * from tb_news where content != 'content';

select time_publish, count(1) as num from (select hour(publish) as time_publish from tb_news) tb_time group by time_publish order by num desc;

這裏寫圖片描述
根據以上截圖的結果能夠看出,小編在發佈時間大部分都是在0時,我只能說,熬夜很差oop

相關文章
相關標籤/搜索