/** 題目:poj3208 Apocalypse Someday 連接:http://poj.org/problem?id=3208 題意:求第K(K <= 5*107)個有連續3個6的數。 思路:數位dp+二分。 dp[i][j]表示長度爲i,前綴狀態爲j時含有的個數。 j=0表示含有前導0; j=1表示前綴連續1個6 j=2表示前綴連續2個6 j=3表示前綴連續3個6 j=4表示前綴不是6; */ //#include<bits/stdc++.h> #include<cstring> #include<cstdio> #include<iostream> #include<map> #include<algorithm> #include<queue> using namespace std; #define P pair<int,int> #define ms(x,y) memset(x,y,sizeof x) #define LL long long const int maxn = 1005; const int mod = 1e9+7; const int maxnode = 100000*6+10; const int sigma_size = 26; const LL inf = 1e18; int digit[22]; LL dp[22][5];///0表示前導0,1表示前綴一個6,2表示前綴2個6,3表示前綴3個6,4表示前綴不是6; int next_state(int state,int x) { if(state==3) return 3; if(x==6){ if(state==1||state==2) return state+1; else return 1; }else { return 4; } } LL dfs(int len,int state,int bounded) { if(len==0){ return state==3; } if(!bounded&&dp[len][state]!=-1) return dp[len][state]; int d = bounded?digit[len]:9; LL ans = 0; for(int i = 0; i <= d; i++){ if(state==0){ if(i==0) ans += dfs(len-1,0,bounded&&(i==d)); else ans += dfs(len-1,i==6?1:4,bounded&&(i==d)); }else { ans += dfs(len-1,next_state(state,i),bounded&&(i==d)); } } if(!bounded){ dp[len][state] = ans; } return ans; } LL solve(LL n) { int len = 0; while(n){ digit[++len] = n%10; n /= 10; } return dfs(len,0,true); } int main() { int T; ms(dp,-1); cin>>T; while(T--) { int n; scanf("%d",&n); LL lo = 1, hi = inf, mi; while(lo<hi){ mi = (lo+hi)/2; LL ans = solve(mi); if(ans>=n){///找下界。 hi = mi; }else { lo = mi+1; } } printf("%lld\n",hi); } return 0; } /* */