Fllink實時計算運用(五)Flink Table API & SQL 案例實戰

1. Table API & SQL 實戰運用

  1. 案例說明java

    • 功能說明sql

      經過socket讀取數據源,進行單詞的統計處理。windows

    • 實現流程socket

      • 初始化Table運行環境
      • 轉換操做處理:ide

        1)以空格進行分割測試

        2)給每一個單詞計數累加1ui

        3)根據單詞進行分組處理url

        4)求和統計code

        5)輸出打印數據orm

      • 執行任務
  2. FlinkTable API 方式實現

    StreamTableApiApplication,代碼實現:

    //獲取流處理的運行環境
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
    EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build();
    
    //獲取Table的運行環境
    StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);
    
    //接入數據源
    DataStreamSource<String> lines = env.socketTextStream("10.10.20.15", 9922);
    
    //對字符串進行分詞壓平
    SingleOutputStreamOperator<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
        @Override
        public void flatMap(String line, Collector<String> out) throws Exception {
            Arrays.stream(line.split(" ")).forEach(out::collect);
        }
    });
    
    //將DataStream轉換成Table對象,字段名默認的是f0,給定字段名是word
    Table table = tabEnv.fromDataStream(words, "word");
    
    //按照單詞進行分組聚合操做
    Table resultTable = table.groupBy("word").select("word, sum(1L) as counts");
    
    //在流處理中,數據會源源不斷的產生,須要累加處理,只能採用用toRestractStream
    //        DataStream<WordCount> wordCountDataStream = tabEnv.toAppendStream(resultTable, WordCount.class);
    //        wordCountDataStream.printToErr("toAppendStream>>>");
    
    DataStream<Tuple2<Boolean, WordCount>> wordCountDataStream = tabEnv.toRetractStream(resultTable, WordCount.class);
    wordCountDataStream.printToErr("toRetractStream>>>");
    
    env.execute();

測試驗證:

開啓socket輸入, 輸入字符串:

[root@flink1 flink-1.11.2]# nc -lk 9922
  1. FlinkTable SQL 方式實現

    代碼實現:

    StreamTableSqlApplication實現類:

    //獲取流處理的運行環境
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
    EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build();
    
    //獲取Table的運行環境
    StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);
    
    //接入數據源
    DataStreamSource<String> lines = env.socketTextStream("10.10.20.15", 9922);
    
    //對字符串進行分詞壓平
    SingleOutputStreamOperator<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
        @Override
        public void flatMap(String line, Collector<String> out) throws Exception {
            Arrays.stream(line.split(" ")).forEach(out::collect);
        }
    });
    
    //將DataStream轉換成Table對象,字段名默認的是f0,給定字段名是word
    tabEnv.registerDataStream("t_wordcount", words, "word");
    
    //按照單詞進行分組聚合操做
    Table resultTable = tabEnv.sqlQuery("select word,count(1) as counts from t_wordcount group by word");
    
    DataStream<Tuple2<Boolean, WordCount>> wordCountDataStream = tabEnv.toRetractStream(resultTable, WordCount.class);
    wordCountDataStream.printToErr("toRetractStream>>>");
    env.execute();

2. Flink SQL 滾動窗口實戰

  1. Flink SQL 窗口說明

    Flink SQL支持的窗口聚合主要是兩種:Window聚合和Over聚合。這裏主要介紹Window聚合。Window聚合支持兩種時間屬性定義窗口:Event Time和Processing Time。每種時間屬性類型支持三種窗口類型:滾動窗口(TUMBLE)、滑動窗口(HOP)和會話窗口(SESSION)

  2. 案例說明

    統計在過去的1分鐘內有多少用戶點擊了某個的網頁,能夠經過定義一個窗口來收集最近1分鐘內的數據,並對這個窗口內的數據進行計算。

    測試數據:

| 用戶名 | 訪問地址 | 訪問時間|
| ------ | --------------------- | -------------------- |
| 張三 | http://taobao.com/xxx | 2021-05-10 10:00:00 |
| 張三 | http://taobao.com/xxx | 2021-05-10 10:00:10 |
| 張三 | http://taobao.com/xxx | 2021-05-10 10:00:49 |
| 張三 | http://taobao.com/xxx | 2021-05-10 10:01:05 |
| 張三 | http://taobao.com/xxx | 2021-05-10 10:01:58 |
| 李四 | http://taobao.com/xxx | 2021-05-10 10:02:10 |

  1. 滾動窗口運用

    滾動窗口(Tumbling windows)要用Tumble類來定義,另外還有三個方法:

    • over:定義窗口長度
    • on:用來分組(按時間間隔)或者排序(按行數)的時間字段
    • as:別名,必須出如今後面的groupBy中

    實現步驟:

    • 初始化流運行環境
    • 在流模式下使用blink planner
    • 建立用戶點擊事件數據
    • 將源數據寫入臨時文件並獲取絕對路徑
    • 建立表載入用戶點擊事件數據
    • 對錶運行SQL查詢,並將結果做爲新表檢索
    • Table轉換成DataStream
    • 執行任務

    TumbleUserClickApplication,實現代碼:

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
    EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
    StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);
    
    // 將源數據寫入臨時文件並獲取絕對路徑
    String contents =
            "張三,http://taobao.com/xxx,2021-05-10 10:00:00\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:00:10\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:00:49\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:01:05\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:01:58\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:02:10\n";
    String path = FileUtil.createTempFile(contents);
    
    String ddl = "CREATE TABLE user_clicks (\n" +
            "  username varchar,\n" +
            "  click_url varchar,\n" +
            "  ts TIMESTAMP(3),\n" +
            "  WATERMARK FOR ts AS ts - INTERVAL '2' SECOND\n" +
            ") WITH (\n" +
            "  'connector.type' = 'filesystem',\n" +
            "  'connector.path' = '" + path + "',\n" +
            "  'format.type' = 'csv'\n" +
            ")";
    
    tabEnv.sqlUpdate(ddl);
    
    //對錶數據進行sql查詢,並將結果做爲新表進行查詢
    String query = "SELECT\n" +
            "  TUMBLE_START(ts, INTERVAL '1' MINUTE),\n" +
            "  TUMBLE_END(ts, INTERVAL '1' MINUTE),\n" +
            "  username,\n" +
            "  COUNT(click_url)\n" +
            "FROM user_clicks\n" +
            "GROUP BY TUMBLE(ts, INTERVAL '1' MINUTE), username";
    
    Table result = tabEnv.sqlQuery(query);
    
    tabEnv.toAppendStream(result, Row.class).print();
    
    env.execute();

以1分鐘做爲時間滾動窗口,水印延遲2秒。

輸出結果:

4> 2021-10-10T10:00,2021-10-10T10:01,張三,3
4> 2021-10-10T10:01,2021-10-10T10:02,張三,2
4> 2021-10-10T10:02,2021-10-10T10:03,張三,1

3. Flink SQL 滑動窗口實戰

  1. 實現步驟

    • 初始化流運行環境
    • 在流模式下使用blink planner
    • 建立用戶點擊事件數據
    • 將源數據寫入臨時文件並獲取絕對路徑
    • 建立表載入用戶點擊事件數據
    • 對錶運行SQL查詢,並將結果做爲新表檢索
    • Table轉換成DataStream
    • 執行任務
  2. 實現代碼

    代碼HopUserClickApplication:

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
    EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
    StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);
    
    // 將源數據寫入臨時文件並獲取絕對路徑
    String contents =
            "張三,http://taobao.com/xxx,2020-10-10 10:00:00\n" +
                    "張三,http://taobao.com/xxx,2020-10-10 10:00:10\n" +
                    "張三,http://taobao.com/xxx,2020-10-10 10:00:49\n" +
                    "張三,http://taobao.com/xxx,2020-10-10 10:01:05\n" +
                    "張三,http://taobao.com/xxx,2020-10-10 10:01:58\n" +
                    "張三,http://taobao.com/xxx,2020-10-10 10:02:10\n";
    String path = FileUtil.createTempFile(contents);
    
    String ddl = "CREATE TABLE user_clicks (\n" +
            "  username varchar,\n" +
            "  click_url varchar,\n" +
            "  ts TIMESTAMP(3),\n" +
            "  WATERMARK FOR ts AS ts - INTERVAL '2' SECOND\n" +
            ") WITH (\n" +
            "  'connector.type' = 'filesystem',\n" +
            "  'connector.path' = '" + path + "',\n" +
            "  'format.type' = 'csv'\n" +
            ")";
    
    tabEnv.sqlUpdate(ddl);
    
    //對錶數據進行sql查詢,並將結果做爲新表進行查詢,每隔30秒,統計一次過去1分鐘的數據
    String query = "SELECT\n" +
            "  HOP_START(ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE),\n" +
            "  HOP_END(ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE),\n" +
            "  username,\n" +
            "  COUNT(click_url)\n" +
            "FROM user_clicks\n" +
            "GROUP BY HOP (ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE), username";
    
    Table result = tabEnv.sqlQuery(query);
    
    tabEnv.toAppendStream(result, Row.class).print();
    
    env.execute();

每隔30秒,統計一次過去1分鐘的用戶點擊數量。

輸出結果:

4> 2021-05-10T09:59:30,2021-05-10T10:00:30,張三,2
4> 2021-05-10T10:00,2021-05-10T10:01,張三,3
4> 2021-05-10T10:00:30,2021-05-10T10:01:30,張三,2
4> 2021-05-10T10:01,2021-05-10T10:02,張三,2
4> 2021-05-10T10:01:30,2021-05-10T10:02:30,張三,2
4> 2021-05-10T10:02,2021-05-10T10:03,張三,1

4. Flink SQL 會話窗口實戰

  1. 實現步驟

    • 初始化流運行環境
    • 在流模式下使用blink planner
    • 建立用戶點擊事件數據
    • 將源數據寫入臨時文件並獲取絕對路徑
    • 建立表載入用戶點擊事件數據
    • 對錶運行SQL查詢,並將結果做爲新表檢索
    • Table轉換成DataStream
    • 執行任務
  2. 代碼實現:

    代碼:SessionUserClickApplication

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
    EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
    StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env, environmentSettings);
    
    // 將源數據寫入臨時文件並獲取絕對路徑
    String contents =
            "張三,http://taobao.com/xxx,2021-05-10 10:00:00\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:00:10\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:00:49\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:01:05\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:01:58\n" +
                    "張三,http://taobao.com/xxx,2021-05-10 10:02:10\n";
    String path = FileUtil.createTempFile(contents);
    
    String ddl = "CREATE TABLE user_clicks (\n" +
            "  username varchar,\n" +
            "  click_url varchar,\n" +
            "  ts TIMESTAMP(3),\n" +
            "  WATERMARK FOR ts AS ts - INTERVAL '2' SECOND\n" +
            ") WITH (\n" +
            "  'connector.type' = 'filesystem',\n" +
            "  'connector.path' = '" + path + "',\n" +
            "  'format.type' = 'csv'\n" +
            ")";
    
    tabEnv.sqlUpdate(ddl);
    
    //對錶數據進行sql查詢,並將結果做爲新表進行查詢,每隔30秒統計一次數據
    String query = "SELECT\n" +
            "  SESSION_START(ts, INTERVAL '30' SECOND),\n" +
            "  SESSION_END(ts, INTERVAL '30' SECOND),\n" +
            "  username,\n" +
            "  COUNT(click_url)\n" +
            "FROM user_clicks\n" +
            "GROUP BY SESSION (ts, INTERVAL '30' SECOND), username";
    
    Table result = tabEnv.sqlQuery(query);
    
    tabEnv.toAppendStream(result, Row.class).print();
    
    env.execute();

每隔30秒統計一次用戶點擊數據.

輸出結果:

4> 2021-05-10T10:00,2021-05-10T10:00:40,張三,2
4> 2021-05-10T10:00:49,2021-05-10T10:01:35,張三,2
4> 2021-05-10T10:01:58,2021-05-10T10:02:40,張三,2

本文由mirson創做分享,如需進一步交流,請加QQ羣:19310171或訪問www.softart.cn

相關文章
相關標籤/搜索