1. Linux下的五種I/O模型mysql
一直阻塞 應用程序調用一個IO函數,致使應用程序阻塞,等待數據準備好。 若是數據沒有準備好,一直等待….數據準備好了,從內核拷貝到用戶空間,IO函數返回成功指示。linux
咱們 第一次接觸到的網絡編程都是從 listen()、send()、recv()等接口開始的。使用這些接口能夠很方便的構建服務器 /客戶機的模型。算法
在調用recv()/recvfrom()函數時,發生在內核中等待數據和複製數據的過程。sql
當調用recv()函數時,系統首先查是否有準備好的數據。若是數據沒有準備好,那麼系統就處於等待狀態。當數據準備好後,將數據從系統緩衝區複製到用戶空間,而後該函數返回。在套接應用程序中,當調用recv()函數時,未必用戶空間就已經存在數據,那麼此時recv()函數就會處於等待狀態。數據庫
當使用socket()函數和WSASocket()函數建立套接字時,默認的套接字都是阻塞的。這意味着當調用Windows Sockets API不能當即完成時,線程處於等待狀態,直到操做完成。apache
並非全部Windows Sockets API以阻塞套接字爲參數調用都會發生阻塞。例如,以阻塞模式的套接字爲參數調用bind()、listen()函數時,函數會當即返回。將可能阻塞套接字的Windows Sockets API調用分爲如下四種:編程
1.輸入操做: recv()、recvfrom()、WSARecv()和WSARecvfrom()函數。以阻塞套接字爲參數調用該函數接收數據。若是此時套接字緩衝區內沒有數據可讀,則調用線程在數據到來前一直睡眠。數組
2.輸出操做: send()、sendto()、WSASend()和WSASendto()函數。以阻塞套接字爲參數調用該函數發送數據。若是套接字緩衝區沒有可用空間,線程會一直睡眠,直到有空間。緩存
3.接受鏈接:accept()和WSAAcept()函數。以阻塞套接字爲參數調用該函數,等待接受對方的鏈接請求。若是此時沒有鏈接請求,線程就會進入睡眠狀態。安全
4.外出鏈接:connect()和WSAConnect()函數。對於TCP鏈接,客戶端以阻塞套接字爲參數,調用該函數向服務器發起鏈接。該函數在收到服務器的應答前,不會返回。這意味着TCP鏈接總會等待至少到服務器的一次往返時間。
阻 塞模式套接字的不足表現爲,在大量創建好的套接字線程之間進行通訊時比較困難。當使用「生產者-消費者」模型開發網絡程序時,爲每一個套接字都分別分配一個 讀線程、一個處理數據線程和一個用於同步的事件,那麼這樣無疑加大系統的開銷。其最大的缺點是當但願同時處理大量套接字時,將無從下手,其擴展性不好.
阻塞模式給網絡編程帶來了一個很大的問題,如在調用 send()的同時,線程將被阻塞,在此期間,線程將沒法執行任何運算或響應任何的網絡請求。這給多客戶機、多業務邏輯的網絡編程帶來了挑戰。這時,咱們可能會選擇多線程的方式來解決這個問題。
應對多客戶機的網絡應用,最簡單的解決方式是在服務器端使用多線程(或多進程)。多線程(或多進程)的目的是讓每一個鏈接都擁有獨立的線程(或進程),這樣任何一個鏈接的阻塞都不會影響其餘的鏈接。
具體使用多進程仍是多線程,並無一個特定的模式。傳統意義上,進程的開銷要遠遠大於線程,因此,若是須要同時爲較多的客戶機提供服務,則不推薦使用多進程;若是單個服務執行體須要消耗較多的 CPU 資源,譬如須要進行大規模或長時間的數據運算或文件訪問,則進程較爲安全。一般,使用 pthread_create () 建立新線程,fork() 建立新進程。
多線程/進程服務器同時爲多個客戶機提供應答服務。模型以下:
主線程持續等待客戶端的鏈接請求,若是有鏈接,則建立新線程,並在新線程中提供爲前例一樣的問答服務。
上述多線程的服務器模型彷佛完美的解決了爲多個客戶機提供問答服務的要求,但其實並不盡然。若是要同時響應成百上千路的鏈接請求,則不管多線程仍是多進程都會嚴重佔據系統資源,下降系統對外界響應效率,而線程與進程自己也更容易進入假死狀態。
由此可能會考慮使用「線程池」或「鏈接池」。「線程池」旨在減小創 建和銷燬線程的頻率,其維持必定合理數量的線程,並讓空閒的線程從新承擔新的執行任務。「鏈接池」維持鏈接的緩存池,儘可能重用已有的鏈接、減小建立和關閉 鏈接的頻率。這兩種技術均可以很好的下降系統開銷,都被普遍應用不少大型系統,如apache,MySQL數據庫等。
可是,「線程池」和「鏈接池」技術也只是在必定程度上緩解了頻繁調用 IO 接口帶來的資源佔用。並且,所謂「池」始終有其上限,當請求大大超過上限時,「池」構成的系統對外界的響應並不比沒有池的時候效果好多少。因此使用「池」 必須考慮其面臨的響應規模,並根據響應規模調整「池」的大小。
對應上例中的所面臨的可能同時出現的上千甚至上萬次的客戶端請求,「線程池」或「鏈接池」或許能夠緩解部分壓力,可是不能解決全部問題。
咱們把一個SOCKET接口設置爲非阻塞就是告訴內核,當所請求的I/O操做沒法完成時,不要將進程睡眠,而是返回一個錯誤。這樣咱們的I/O操做函數將不斷的測試數據是否已經準備好,若是沒有準備好,繼續測試,直到數據準備好爲止。在這個不斷測試的過程當中,會大量的佔用CPU的時間。
把SOCKET設 置爲非阻塞模式,即通知系統內核:在調用Windows Sockets API時,不要讓線程睡眠,而應該讓函數當即返回。在返回時,該函數返回一個錯誤代碼。圖所示,一個非阻塞模式套接字屢次調用recv()函數的過程。前 三次調用recv()函數時,內核數據尚未準備好。所以,該函數當即返回WSAEWOULDBLOCK錯誤代碼。第四次調用recv()函數時,數據已 經準備好,被複制到應用程序的緩衝區中,recv()函數返回成功指示,應用程序開始處理數據。
當使用socket()函數和WSASocket()函數建立套接字時,默認都是阻塞的。在建立套接字以後,經過調用ioctlsocket()函數,將該套接字設置爲非阻塞模式。Linux下的函數是:fcntl().
套接字設置爲非阻塞模式後,在調用Windows Sockets API函數時,調用函數會當即返回。大多數狀況下,這些函數調用都會調用「失敗」,並返回WSAEWOULDBLOCK錯誤代碼。說明請求的操做在調用期 間內沒有時間完成。一般,應用程序須要重複調用該函數,直到得到成功返回代碼。
須要說明的是並不是全部的Windows Sockets API在非阻塞模式下調用,都會返回WSAEWOULDBLOCK錯誤。例如,以非阻塞模式的套接字爲參數調用bind()函數時,就不會返回該錯誤代 碼。固然,在調用WSAStartup()函數時更不會返回該錯誤代碼,由於該函數是應用程序第一調用的函數,固然不會返回這樣的錯誤代碼。
要將套接字設置爲非阻塞模式,除了使用ioctlsocket()函數以外,還可使用WSAAsyncselect()和WSAEventselect()函數。當調用該函數時,套接字會自動地設置爲非阻塞方式。
要完成這樣的操做,有人使用MSG_PEEK標誌調用recv()函數查看緩衝區中是否有數據可讀。一樣,這種方法也很差。由於該作法對系統形成的開銷是 很大的,而且應用程序至少要調用recv()函數兩次,才能實際地讀入數據。較好的作法是,使用套接字的「I/O模型」來判斷非阻塞套接字是否可讀可寫。
非阻塞模式套接字與阻塞模式套接字相比,不容易使用。使用非阻塞模式套接字,須要編寫更多的代碼,以便在每一個Windows Sockets API函數調用中,對收到的WSAEWOULDBLOCK錯誤進行處理。所以,非阻塞套接字便顯得有些難於使用。
可是,非阻塞套接字在控制創建的多個鏈接,在數據的收發量不均,時間不定時,明顯具備優點。這種套接字在使用上存在必定難度,但只要排除了這些困難,它在 功能上仍是很是強大的。一般狀況下,可考慮使用套接字的「I/O模型」,它有助於應用程序經過異步方式,同時對一個或多個套接字的通訊加以管理。
I/O複用模型會用到select、poll、epoll函數,這幾個函數也會使進程阻塞,可是和阻塞I/O所不一樣的的,這兩個函數能夠同時阻塞多個I /O操做。並且能夠同時對多個讀操做,多個寫操做的I/O函數進行檢測,直到有數據可讀或可寫時,才真正調用I/O操做函數。
兩次調用,兩次返回;
首先咱們容許套接口進行信號驅動I/O,並安裝一個信號處理函數,進程繼續運行並不阻塞。當數據準備好時,進程會收到一個SIGIO信號,能夠在信號處理函數中調用I/O操做函數處理數據。
簡介:數據拷貝的時候進程無需阻塞。
當一個異步過程調用發出後,調用者不能馬上獲得結果。實際處理這個調用的部件在完成後,經過狀態、通知和回調來通知調用者的輸入輸出操做
5個I/O模型的比較:
3. select、poll、epoll簡介
.NET/hguisu/article/details/38638183#t5
epoll模型:http://blog.csdn.net/hguisu/article/details/38638183#t12
epoll跟select都能提供多路I/O複用的解決方案。在如今的Linux內核裏有都可以支持,其中epoll是Linux所特有,而select則應該是POSIX所規定,通常操做系統均有實現
select:
select本質上是經過設置或者檢查存放fd標誌位的數據結構來進行下一步處理。這樣所帶來的缺點是:
一、 單個進程可監視的fd數量被限制,即能監聽端口的大小有限。
通常來講這個數目和系統內存關係很大,具體數目能夠cat /proc/sys/fs/file-max察看。32位機默認是1024個。64位機默認是2048.
二、 對socket進行掃描時是線性掃描,即採用輪詢的方法,效率較低:
當套接字比較多的時候,每次select()都要經過遍歷FD_SETSIZE個Socket來完成調度,無論哪一個Socket是活躍的,都遍歷一遍。這 會浪費不少CPU時間。若是能給套接字註冊某個回調函數,當他們活躍時,自動完成相關操做,那就避免了輪詢,這正是epoll與kqueue作的。
三、須要維護一個用來存放大量fd的數據結構,這樣會使得用戶空間和內核空間在傳遞該結構時複製開銷大
poll:
poll 本質上和select沒有區別,它將用戶傳入的數組拷貝到內核空間,而後查詢每一個fd對應的設備狀態,若是設備就緒則在設備等待隊列中加入一項並繼續遍 歷,若是遍歷完全部fd後沒有發現就緒設備,則掛起當前進程,直到設備就緒或者主動超時,被喚醒後它又要再次遍歷fd。這個過程經歷了屢次無謂的遍歷。
它沒有最大鏈接數的限制,緣由是它是基於鏈表來存儲的,可是一樣有一個缺點:
一、大量的fd的數組被總體複製於用戶態和內核地址空間之 間,而無論這樣的複製是否是有意 義。 二、poll還有一個特色是「水平觸發」,若是報告了fd後,沒有被處理,那麼下次poll時會再次報告該fd。
epoll:
epoll 支持水平觸發和邊緣觸發,最大的特色在於邊緣觸發,它只告訴進程哪些fd剛剛變爲就需態,而且只會通知一次。還有一個特色是,epoll使用「事件」的就 緒通知方式,經過epoll_ctl註冊fd,一旦該fd就緒,內核就會採用相似callback的回調機制來激活該fd,epoll_wait即可以收 到通知
即Epoll最大的優勢就在於它只管你「活躍」的鏈接,而跟鏈接總數無關,所以在實際的網絡環境中,Epoll的效率就會遠遠高於select和poll。
一、支持一個進程所能打開的最大鏈接數
select |
單個進程所能打開的最大鏈接數有FD_SETSIZE宏定 義,其大小是32個整數的大小(在32位的機器上,大小就是32*32,同理64位機器上FD_SETSIZE爲32*64),固然咱們能夠對進行修改, 而後從新編譯內核,可是性能可能會受到影響,這須要進一步的測試。 |
poll |
poll本質上和select沒有區別,可是它沒有最大鏈接數的限制,緣由是它是基於鏈表來存儲的 |
epoll |
雖然鏈接數有上限,可是很大,1G內存的機器上能夠打開10萬左右的鏈接,2G內存的機器能夠打開20萬左右的鏈接 |
二、FD劇增後帶來的IO效率問題
select |
由於每次調用時都會對鏈接進行線性遍歷,因此隨着FD的增長會形成遍歷速度慢的「線性降低性能問題」。 |
poll |
同上 |
epoll |
由於epoll內核中實現是根據每一個fd上的 callback函數來實現的,只有活躍的socket纔會主動調用callback,因此在活躍socket較少的狀況下,使用epoll沒有前面二者 的線性降低的性能問題,可是全部socket都很活躍的狀況下,可能會有性能問題。 |
三、 消息傳遞方式
select |
內核須要將消息傳遞到用戶空間,都須要內核拷貝動做 |
poll |
同上 |
epoll |
epoll經過內核和用戶空間共享一塊內存來實現的。 |
總結:
綜上,在選擇select,poll,epoll時要根據具體的使用場合以及這三種方式的自身特色。
一、表面上看epoll的性能最好,可是在鏈接數少而且鏈接都十分活躍的狀況下,select和poll的性能可能比epoll好,畢竟epoll的通知機制須要不少函數回調。
二、 同步/異步與阻塞/非阻塞常常看到是成對出現:
同步阻塞,異步非阻塞,同步非阻塞