kafka的單機部署版本

本部署使用的版本爲kafka_2.8.0-0.8.0。 
參考了http://blog.csdn.net/itleochen/article/details/17451455這篇博文; 
並根據官網介紹http://kafka.apache.org/documentation.html#quickstart完成。 
廢話少說,直接上步驟 
1.下載kafka_2.8.0-0.8.0.tar.gz 
https://archive.apache.org/dist/kafka/0.8.0/kafka_2.8.0-0.8.0.tar.gz 
2.解壓縮 
tar -vxf kafka_2.8.0-0.8.0.tar.gz 
3.修改配置文件 
修改conf/server.properties 
host.name=192.168.110.129(修改成主機ip,否則服務器返回給客戶端的是主機的hostname,客戶端並不必定可以識別) 
修改conf/zookeeper.properties 屬性文件 
dataDir=/usr/local/tmp/zookeeper   (zookeeper臨時數據文件) 
4.啓動zookeeper和kafka 
cd bin 
啓動zookeeper 
./zookeeper-server-start.sh ../config/zookeeper.properties & (&推出命令行,服務守護執行) 
啓動kafka 
./kafka-server-start.sh ../config/server.properties & 
5.驗證是否成功 
*建立主題 
./kafka-create-topic.sh --partition 1 --replica 1 --zookeeper localhost:2181 --topic test 
檢查是否建立主題成功 
./kafka-list-topic.sh --zookeeper localhost:2181 
*啓動produce 
./bin/kafka-console-producer.sh --broker-list 192.168.110.129:9092  --topic test 
*啓動consumer 
./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test 
6.關閉kafka和zookeeper 
./kafka-server-stop.sh ../config/server.properties 
./zookeeper-server-stop.sh 
心得總結: 
1.produce啓動的時候參數使用的是kafka的端口而consumer啓動的時候使用的是zookeeper的端口; 
2.必須先建立topic才能使用; 
3.topic本質是以文件的形式儲存在zookeeper上的。html

 

消費者java

package com.kafka;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.serializer.StringDecoder;
import kafka.utils.VerifiableProperties;

public class KafkaConsumer
{

	private final ConsumerConnector consumer;


	private KafkaConsumer()
	{
		Properties props = new Properties();
		// zookeeper 配置
		props.put( "zookeeper.connect", "192.168.110.129:2181" );

		// group 表明一個消費組
		props.put( "group.id", "jd-group" );

		// zk鏈接超時
		props.put( "zookeeper.session.timeout.ms", "4000" );
		props.put( "zookeeper.sync.time.ms", "200" );
		props.put( "auto.commit.interval.ms", "1000" );
		props.put( "auto.offset.reset", "smallest" );
		// 序列化類
		props.put( "serializer.class", "kafka.serializer.StringEncoder" );

		ConsumerConfig config = new ConsumerConfig( props );

		consumer = kafka.consumer.Consumer.createJavaConsumerConnector( config );
	}


	void consume()
	{
		Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
		topicCountMap.put( KafkaProducer.TOPIC, new Integer( 1 ) );

		StringDecoder keyDecoder = new StringDecoder( new VerifiableProperties() );
		StringDecoder valueDecoder = new StringDecoder( new VerifiableProperties() );

		Map<String, List<KafkaStream<String, String>>> consumerMap = consumer.createMessageStreams( topicCountMap, keyDecoder, valueDecoder );
		KafkaStream<String, String> stream = consumerMap.get( KafkaProducer.TOPIC ).get( 0 );
		ConsumerIterator<String, String> it = stream.iterator();
		while (it.hasNext())
			System.out.println( it.next().message() );
	}


	public static void main(String[] args)
	{
		new KafkaConsumer().consume();
	}
}

生產者apache

package com.kafka;

import java.util.Properties;

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

/**
 * Hello world!
 *
 */
public class KafkaProducer
{
	private final Producer<String, String> producer;

	public final static String TOPIC = "TEST-TOPIC";


	private KafkaProducer()
	{
		Properties props = new Properties();
		// 此處配置的是kafka的端口
		props.put( "metadata.broker.list", "192.168.110.129:9092" );

		// 配置value的序列化類
		props.put( "serializer.class", "kafka.serializer.StringEncoder" );
		// 配置key的序列化類
		props.put( "key.serializer.class", "kafka.serializer.StringEncoder" );

		// request.required.acks
		// 0, which means that the producer never waits for an acknowledgement from the broker (the same
		// behavior as 0.7). This option provides the lowest latency but the weakest durability guarantees
		// (some data will be lost when a server fails).
		// 1, which means that the producer gets an acknowledgement after the leader replica has received the
		// data. This option provides better durability as the client waits until the server acknowledges the
		// request as successful (only messages that were written to the now-dead leader but not yet
		// replicated will be lost).
		// -1, which means that the producer gets an acknowledgement after all in-sync replicas have received
		// the data. This option provides the best durability, we guarantee that no messages will be lost as
		// long as at least one in sync replica remains.
		props.put( "request.required.acks", "-1" );

		producer = new Producer<String, String>( new ProducerConfig( props ) );
	}


	void produce()
	{
		int messageNo = 1000;
		final int COUNT = 2000;

		while (messageNo < COUNT)
		{
			String key = String.valueOf( messageNo );
			String data = "hello kafka message " + key;
			producer.send( new KeyedMessage<String, String>( TOPIC, key, data ) );
			// System.out.println( data );
			messageNo++;
		}
	}


	public static void main(String[] args)
	{
		new KafkaProducer().produce();
	}
}
相關文章
相關標籤/搜索