從RocketMQ看長輪詢(Long Polling)

前言

消息隊列通常在消費端都會提供push和pull兩種模式,RocketMQ一樣實現了這兩種模式,分別提供了兩個實現類:DefaultMQPushConsumer和DefaultMQPullConsumer;兩種方式各有優點:
push模式:推送模式,即服務端有數據以後立馬推送消息給客戶端,須要客戶端和服務器創建長鏈接,實時性很高,對客戶端來講也簡單,接收處理消息便可;缺點就是服務端不知道客戶端處理消息的能力,可能會致使數據積壓,同時也增長了服務端的工做量,影響服務端的性能;
pull模式:拉取模式,即客戶端主動去服務端拉取數據,主動權在客戶端,拉取數據,而後處理數據,再拉取數據,一直循環下去,具體拉取數據的時間間隔很差設定,過短可能會致使大量的鏈接拉取不到數據,太長致使數據接收不及時;
RocketMQ使用了長輪詢的方式,兼顧了push和pull兩種模式的優勢,下面首先對長輪詢作簡單介紹,進而分析RocketMQ內置的長輪詢模式。git

長輪詢

長輪詢經過客戶端和服務端的配合,達到主動權在客戶端,同時也能保證數據的實時性;長輪詢本質上也是輪詢,只不過對普通的輪詢作了優化處理,服務端在沒有數據的時候並非立刻返回數據,會hold住請求,等待服務端有數據,或者一直沒有數據超時處理,而後一直循環下去;下面看一下如何簡單實現一個長輪詢;github

1.實現步驟

1.1客戶端輪詢發送請求

客戶端應該存在一個一直循環的程序,不停的向服務端發送獲取消息請求;express

1.2服務端處理數據

服務器接收到客戶端請求以後,首先查看是否有數據,若是有數據則直接返回,若是沒有則保持鏈接,等待獲取數據,服務端獲取數據以後,會通知以前的請求鏈接來獲取數據,而後返回給客戶端;服務器

1.3客戶端接收數據

正常狀況下,客戶端會立刻接收到服務端的數據,或者等待一段時間獲取到數據;若是一直獲取不到數據,會有超時處理;在獲取數據或者超時處理以後會關閉鏈接,而後再次發起長輪詢請求;app

2.實現實例

如下使用netty模擬一個http服務器,使用HttpURLConnection模擬客戶端發送請求,使用BlockingQueue存放數據;dom

服務端代碼ide

public class Server {

    public static void start(final int port) throws Exception {
        EventLoopGroup boss = new NioEventLoopGroup();
        EventLoopGroup woker = new NioEventLoopGroup();
        ServerBootstrap serverBootstrap = new ServerBootstrap();

        try {

            serverBootstrap.channel(NioServerSocketChannel.class).group(boss, woker)
                    .childOption(ChannelOption.SO_KEEPALIVE, true).option(ChannelOption.SO_BACKLOG, 1024)
                    .childHandler(new ChannelInitializer<SocketChannel>() {
                        @Override
                        protected void initChannel(SocketChannel ch) throws Exception {
                            ch.pipeline().addLast("http-decoder", new HttpServerCodec());
                            ch.pipeline().addLast(new HttpServerHandler());
                        }
                    });

            ChannelFuture future = serverBootstrap.bind(port).sync();
            System.out.println("server start ok port is " + port);
            DataCenter.start();
            future.channel().closeFuture().sync();
        } finally {
            boss.shutdownGracefully();
            woker.shutdownGracefully();
        }
    }

    public static void main(String[] args) throws Exception {
        start(8080);
    }
}

netty默認支持http協議,直接使用便可,啓動端口爲8080;同時啓動數據中心服務,相關代碼以下:oop

public class DataCenter {

    private static Random random = new Random();
    private static BlockingQueue<String> queue = new LinkedBlockingQueue<>();
    private static AtomicInteger num = new AtomicInteger();

    public static void start() {
        while (true) {
            try {
                Thread.sleep(random.nextInt(5) * 1000);
                String data = "hello world" + num.incrementAndGet();
                queue.put(data);
                System.out.println("store data:" + data);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    public static String getData() throws InterruptedException {
        return queue.take();
    }

}

爲了模擬服務端沒有數據,須要等待的狀況,這裏使用BlockingQueue來模擬,不按期的往隊列裏面插入數據,同時對外提供獲取數據的方法,使用的是take方法,沒有數據會阻塞知道有數據爲止;getData在類HttpServerHandler中使用,此類也很簡單,以下:性能

public class HttpServerHandler extends ChannelInboundHandlerAdapter {

    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
        if (msg instanceof HttpRequest) {
            FullHttpResponse httpResponse = new DefaultFullHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK);
            httpResponse.content().writeBytes(DataCenter.getData().getBytes());
            httpResponse.headers().set(HttpHeaders.Names.CONTENT_TYPE, "text/plain; charset=UTF-8");
            httpResponse.headers().set(HttpHeaders.Names.CONTENT_LENGTH, httpResponse.content().readableBytes());
            ctx.writeAndFlush(httpResponse);
        }
    }
}

獲取到客戶端的請求以後,從數據中心獲取一條消息,若是沒有數據,會進行等待,直到有數據爲止;而後使用FullHttpResponse返回給客戶端;客戶端使用HttpURLConnection來和服務端創建鏈接,不停的拉取數據,代碼以下:優化

public class Client {

    public static void main(String[] args) {
        while (true) {
            HttpURLConnection connection = null;
            try {
                URL url = new URL("http://localhost:8080");
                connection = (HttpURLConnection) url.openConnection();
                connection.setReadTimeout(10000);
                connection.setConnectTimeout(3000);
                connection.setRequestMethod("GET");
                connection.connect();
                if (200 == connection.getResponseCode()) {
                    BufferedReader reader = null;
                    try {
                        reader = new BufferedReader(new InputStreamReader(connection.getInputStream(), "UTF-8"));
                        StringBuffer result = new StringBuffer();
                        String line = null;
                        while ((line = reader.readLine()) != null) {
                            result.append(line);
                        }
                        System.out.println("時間:" + new Date().toString() + "result =  " + result);
                    } finally {
                        if (reader != null) {
                            reader.close();
                        }
                    }
                }
            } catch (IOException e) {
                e.printStackTrace();
            } finally {
                if (connection != null) {
                    connection.disconnect();
                }
            }
        }
    }
}

以上只是簡單的模擬了長輪詢的方式,下面重點來看看RocketMQ是如何實現長輪詢的;

RocketMQ長輪詢

RocketMQ的消費端提供了兩種消費模式分別是:DefaultMQPushConsumer和DefaultMQPullConsumer,其中DefaultMQPushConsumer就是使用的長輪詢,因此下面重點分析此類;

1.PullMessage服務

從名字能夠看出來就是客戶端從服務端拉取數據的服務,看裏面的一個核心方法:

@Override
    public void run() {
        log.info(this.getServiceName() + " service started");

        while (!this.isStopped()) {
            try {
                PullRequest pullRequest = this.pullRequestQueue.take();
                this.pullMessage(pullRequest);
            } catch (InterruptedException ignored) {
            } catch (Exception e) {
                log.error("Pull Message Service Run Method exception", e);
            }
        }

        log.info(this.getServiceName() + " service end");
    }

服務啓動以後,會一直不停的循環調用拉取數據,PullRequest能夠看做是拉取數據須要的參數,部分代碼以下:

public class PullRequest {
    private String consumerGroup;
    private MessageQueue messageQueue;
    private ProcessQueue processQueue;
    private long nextOffset;
    private boolean lockedFirst = false;
    ...省略...
}

每一個MessageQueue 對應了封裝成了一個PullRequest,由於拉取數據是以每一個Broker下面的Queue爲單位,同時裏面還一個ProcessQueue,每一個MessageQueue也一樣對應一個ProcessQueue,保存了這個MessageQueue消息處理狀態的快照;還有nextOffset用來標識讀取的位置;繼續看一段pullMessage中的內容,給服務端發送請求的頭內容:

PullMessageRequestHeader requestHeader = new PullMessageRequestHeader();
requestHeader.setConsumerGroup(this.consumerGroup);
requestHeader.setTopic(mq.getTopic());
requestHeader.setQueueId(mq.getQueueId());
requestHeader.setQueueOffset(offset);
requestHeader.setMaxMsgNums(maxNums);
requestHeader.setSysFlag(sysFlagInner);
requestHeader.setCommitOffset(commitOffset);
requestHeader.setSuspendTimeoutMillis(brokerSuspendMaxTimeMillis);
requestHeader.setSubscription(subExpression);
requestHeader.setSubVersion(subVersion);
requestHeader.setExpressionType(expressionType);

String brokerAddr = findBrokerResult.getBrokerAddr();
if (PullSysFlag.hasClassFilterFlag(sysFlagInner)) {
      brokerAddr = computPullFromWhichFilterServer(mq.getTopic(), brokerAddr);
}

PullResult pullResult = this.mQClientFactory.getMQClientAPIImpl().pullMessage(
                brokerAddr,
                requestHeader,
                timeoutMillis,
                communicationMode,
                pullCallback);

            return pullResult;

其中有一個參數是SuspendTimeoutMillis,做用是設置Broker的最長阻塞時間,默認爲15秒,前提是沒有消息的狀況下,有消息會馬上返回;

2.PullMessageProcessor服務

從名字能夠看出,服務端用來處理pullMessage的服務,下面重點看一下processRequest方法,其中包括對獲取不一樣結果作的處理:

switch (response.getCode()) {
                case ResponseCode.SUCCESS:

                    ...省略...
                    break;
                case ResponseCode.PULL_NOT_FOUND:

                    if (brokerAllowSuspend && hasSuspendFlag) {
                        long pollingTimeMills = suspendTimeoutMillisLong;
                        if (!this.brokerController.getBrokerConfig().isLongPollingEnable()) {
                            pollingTimeMills = this.brokerController.getBrokerConfig().getShortPollingTimeMills();
                        }

                        String topic = requestHeader.getTopic();
                        long offset = requestHeader.getQueueOffset();
                        int queueId = requestHeader.getQueueId();
                        PullRequest pullRequest = new PullRequest(request, channel, pollingTimeMills,
                            this.brokerController.getMessageStore().now(), offset, subscriptionData);
                        this.brokerController.getPullRequestHoldService().suspendPullRequest(topic, queueId, pullRequest);
                        response = null;
                        break;
                    }

                case ResponseCode.PULL_RETRY_IMMEDIATELY:
                    break;
                case ResponseCode.PULL_OFFSET_MOVED:
                    ...省略...

                    break;
                default:
                    assert false;

一共處理了四個類型,咱們關心的是在沒有獲取到數據的狀況下是如何處理的,能夠重點看一下ResponseCode.PULL_NOT_FOUND,表示沒有拉取到數據,此時會調用PullRequestHoldService服務,從名字能夠看出此服務用來hold住請求,不會立馬返回,response被至爲了null,不給客戶端響應;下面重點看一下PullRequestHoldService:

@Override
    public void run() {
        log.info("{} service started", this.getServiceName());
        while (!this.isStopped()) {
            try {
                if (this.brokerController.getBrokerConfig().isLongPollingEnable()) {
                    this.waitForRunning(5 * 1000);
                } else {
                    this.waitForRunning(this.brokerController.getBrokerConfig().getShortPollingTimeMills());
                }

                long beginLockTimestamp = this.systemClock.now();
                this.checkHoldRequest();
                long costTime = this.systemClock.now() - beginLockTimestamp;
                if (costTime > 5 * 1000) {
                    log.info("[NOTIFYME] check hold request cost {} ms.", costTime);
                }
            } catch (Throwable e) {
                log.warn(this.getServiceName() + " service has exception. ", e);
            }
        }

        log.info("{} service end", this.getServiceName());
    }

此方法主要就是經過不停的檢查被hold住的請求,檢查是否已經有數據了,具體檢查哪些就是在ResponseCode.PULL_NOT_FOUND中調用的suspendPullRequest方法:

private ConcurrentHashMap<String/* topic@queueId */, ManyPullRequest> pullRequestTable =
        new ConcurrentHashMap<String, ManyPullRequest>(1024);
        
 public void suspendPullRequest(final String topic, final int queueId, final PullRequest pullRequest) {
        String key = this.buildKey(topic, queueId);
        ManyPullRequest mpr = this.pullRequestTable.get(key);
        if (null == mpr) {
            mpr = new ManyPullRequest();
            ManyPullRequest prev = this.pullRequestTable.putIfAbsent(key, mpr);
            if (prev != null) {
                mpr = prev;
            }
        }

        mpr.addPullRequest(pullRequest);
    }

將須要hold處理的PullRequest放入到一個ConcurrentHashMap中,等待被檢查;具體的檢查代碼在checkHoldRequest中:

private void checkHoldRequest() {
        for (String key : this.pullRequestTable.keySet()) {
            String[] kArray = key.split(TOPIC_QUEUEID_SEPARATOR);
            if (2 == kArray.length) {
                String topic = kArray[0];
                int queueId = Integer.parseInt(kArray[1]);
                final long offset = this.brokerController.getMessageStore().getMaxOffsetInQuque(topic, queueId);
                try {
                    this.notifyMessageArriving(topic, queueId, offset);
                } catch (Throwable e) {
                    log.error("check hold request failed. topic={}, queueId={}", topic, queueId, e);
                }
            }
        }
    }

此方法用來獲取指定messageQueue下最大的offset,而後用來和當前的offset來比較,來肯定是否有新的消息到來;往下看notifyMessageArriving方法:

public void notifyMessageArriving(final String topic, final int queueId, final long maxOffset, final Long tagsCode) {
        String key = this.buildKey(topic, queueId);
        ManyPullRequest mpr = this.pullRequestTable.get(key);
        if (mpr != null) {
            List<PullRequest> requestList = mpr.cloneListAndClear();
            if (requestList != null) {
                List<PullRequest> replayList = new ArrayList<PullRequest>();

                for (PullRequest request : requestList) {
                    long newestOffset = maxOffset;
                    if (newestOffset <= request.getPullFromThisOffset()) {
                        newestOffset = this.brokerController.getMessageStore().getMaxOffsetInQuque(topic, queueId);
                    }

                    if (newestOffset > request.getPullFromThisOffset()) {
                        if (this.messageFilter.isMessageMatched(request.getSubscriptionData(), tagsCode)) {
                            try {
                                this.brokerController.getPullMessageProcessor().executeRequestWhenWakeup(request.getClientChannel(),
                                    request.getRequestCommand());
                            } catch (Throwable e) {
                                log.error("execute request when wakeup failed.", e);
                            }
                            continue;
                        }
                    }

                    if (System.currentTimeMillis() >= (request.getSuspendTimestamp() + request.getTimeoutMillis())) {
                        try {
                            this.brokerController.getPullMessageProcessor().executeRequestWhenWakeup(request.getClientChannel(),
                                request.getRequestCommand());
                        } catch (Throwable e) {
                            log.error("execute request when wakeup failed.", e);
                        }
                        continue;
                    }

                    replayList.add(request);
                }

                if (!replayList.isEmpty()) {
                    mpr.addPullRequest(replayList);
                }
            }
        }
    }

方法中兩個重要的斷定就是:比較當前的offset和maxoffset,看是否有新的消息到來,有新的消息返回客戶端;另一個就是比較當前的時間和阻塞的時間,看是否超過了最大的阻塞時間,超過也一樣返回;
此方法不光在PullRequestHoldService服務類中循環調用檢查,同時在DefaultMessageStore中消息被存儲的時候調用;其實就是主動檢查和被動通知兩種方式。

3.PullCallback回調

服務端處理完以後,給客戶端響應,回調其中的PullCallback,其中在處理完消息以後,重要的一步就是再次把pullRequest放到PullMessageService服務中,等待下一次的輪詢;

總結

本文首先介紹了兩種消費消息的模式,介紹了其中的優缺點,而後引出了長輪詢,而且在本地簡單模擬了長輪詢,最後重點介紹了RocketMQ中是如何實現的長輪詢。

示例代碼地址

Github
Gitee

相關文章
相關標籤/搜索