JavaShuo
欄目
標籤
Bridging the Gap Between Detection and Tracking: A Unified Approach
時間 2020-05-11
標籤
bridging
gap
detection
tracking
unified
approach
简体版
原文
原文鏈接
文章目錄 摘要 背景 貢獻 本文方法 摘要 近年來,目標檢測領域的算法和模型能夠推廣應用到跟蹤領域,與目前大多數結合跟蹤-檢測的算法不一樣,本文的出發點不是設計一個新的跟蹤-檢測算法,而是提出一種通用框架,能夠將任意目標檢測網絡移植到跟蹤領域。web 背景 本文提出將目標檢測網絡移植到跟蹤領域是出於如下motivation的考慮:第一,檢測算法在複雜場景下能夠精確區分不一樣物體,將檢測網絡應用到跟
>>阅读原文<<
相關文章
1.
Bridging the Gap Between Detection and Tracking: A Unified Approach
2.
解讀《Bridging the Gap Between Anchor-based and Anchor-free Detection》
3.
目標檢測論文: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample
4.
[目標檢測]Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample S
5.
Bridging the Gap Between Anchor-based and Anchor-free Detection via ATSS論文閱讀 - CVPR2020 oral
6.
Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling
7.
Bridging the Gap between Training and Inference for Neural Machine Translation翻譯
8.
Tracking by Instance Detection: A Meta-Learning Approach
9.
目標檢測論文閱讀:Bridging the Gap Between Anchor-based and Anchor-free
10.
2020CVPR論文解讀之ATSS:Bridging the Gap Between Anchor-based and Anchor-free Detection
更多相關文章...
•
SQL BETWEEN 操作符
-
SQL 教程
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
between...and
bridging
unified
gap
approach
detection
tracking
a'+'a
Eye-Tracking
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
1.2 Illustrator多文檔的幾種排列方式
2.
5.16--java數據類型轉換及雜記
3.
性能指標
4.
(1.2)工廠模式之工廠方法模式
5.
Java記錄 -42- Java Collection
6.
Java記錄 -42- Java Collection
7.
github使用
8.
Android學習筆記(五十):聲明、請求和檢查許可
9.
20180626
10.
服務擴容可能引入的負面問題及解決方法
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Bridging the Gap Between Detection and Tracking: A Unified Approach
2.
解讀《Bridging the Gap Between Anchor-based and Anchor-free Detection》
3.
目標檢測論文: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample
4.
[目標檢測]Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample S
5.
Bridging the Gap Between Anchor-based and Anchor-free Detection via ATSS論文閱讀 - CVPR2020 oral
6.
Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling
7.
Bridging the Gap between Training and Inference for Neural Machine Translation翻譯
8.
Tracking by Instance Detection: A Meta-Learning Approach
9.
目標檢測論文閱讀:Bridging the Gap Between Anchor-based and Anchor-free
10.
2020CVPR論文解讀之ATSS:Bridging the Gap Between Anchor-based and Anchor-free Detection
>>更多相關文章<<