UOJgit
序列中的每一個位置是等價的。直接令\(f[i][j]\)表示,\(i\)個數的序列,最大值不超過\(j\)的全部序列每一個長爲\(k\)的子區間最大值的乘積的和。
由\(j-1\)轉移到\(j\)時,考慮枚舉第一個\(j\)出如今哪裏。設最左邊的\(j\)在\(p\)位置,那麼會對左端點在\([\max(1,p-k+1),\ \min(p,i-k+1)]\)的每一個\(k\)區間形成\(w[j]\)的貢獻,也就是\(w[j]^{len}\)。\(p\)左邊沒出現過\(j\),貢獻是\(f[p-1][j-1]\);\(p\)右邊還可能出現\(j\),貢獻是\(f[i-p][j]\)。
因此有\(f[i][j]=f[i][j-1]+\sum_{p=1}^{i}f[p-1][j-1]*w[j]^{len}*f[i-p][j]\)。spa
注意初始化的問題,\(f[i][j]\ (i<k)\)的初值是\(j^i\),即序列個數。(這樣\(i\geq k\)的時候是會考慮序列全部構成的)code
複雜度\(O(n^3)\)。get
//1447ms 2052kb #include <cstdio> #include <cctype> #include <algorithm> #define mod 998244353 #define gc() getchar() typedef long long LL; const int N=505; const LL LIM=1ll<<61; int pw[N][N],f[N][N]; inline int read() { int now=0,f=1;register char c=gc(); for(;!isdigit(c);c=='-'&&(f=-1),c=gc()); for(;isdigit(c);now=now*10+c-48,c=gc()); return now*f; } inline int FP(int x,int k) { int t=1; for(; k; k>>=1,x=1ll*x*x%mod) k&1&&(t=1ll*x*t%mod); return t; } int main() { const int n=read(),K=read(); for(int i=1; i<=n; ++i) { int w=read(); pw[i][0]=1; for(int j=1,wn=w; j<=n; ++j,w=1ll*w*wn%mod) pw[i][j]=w; } for(int i=0; i<=n; ++i) f[0][i]=1; for(int i=1; i<=n; ++i) for(int j=1; j<=n; ++j) if(i<K) f[i][j]=FP(j,i); else { LL tmp=f[i][j-1]; for(int p=1; p<=i; ++p) tmp+=1ll*f[p-1][j-1]*f[i-p][j]%mod*pw[j][std::min(p,i-K+1)-std::max(1,p-K+1)+1], tmp>=LIM&&(tmp%=mod); f[i][j]=tmp%mod; } printf("%d\n",f[n][n]); return 0; }