Redission分佈式鎖源碼解析

Redission鎖繼承Implements Reentrant Lock,因此具有 Reentrant Lock 鎖中的一些特性:超時,重試,可中斷等。加上Redission中Redis具有分佈式的特性,因此很是適合用來作Java中的分佈式鎖。 下面咱們對其加鎖、解鎖過程當中的源碼細節進行一一分析。redis

鎖的接口定義了一下方法:分佈式

分佈式鎖當中加鎖,咱們經常使用的加鎖接口:ide

boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException;

下面咱們來看一下方法的具體實現:ui

public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
        long time = unit.toMillis(waitTime);
        long current = System.currentTimeMillis();
        final long threadId = Thread.currentThread().getId();
        Long ttl = tryAcquire(leaseTime, unit, threadId);
        // lock acquired
        if (ttl == null) {
            return true;
        }
        
        time -= (System.currentTimeMillis() - current);
        if (time <= 0) {
            acquireFailed(threadId);
            return false;
        }
        
        current = System.currentTimeMillis();
        final RFuture<RedissonLockEntry> subscribeFuture = subscribe(threadId);
        if (!await(subscribeFuture, time, TimeUnit.MILLISECONDS)) {
            if (!subscribeFuture.cancel(false)) {
                subscribeFuture.addListener(new FutureListener<RedissonLockEntry>() {
                    @Override
                    public void operationComplete(Future<RedissonLockEntry> future) throws Exception {
                        if (subscribeFuture.isSuccess()) {
                            unsubscribe(subscribeFuture, threadId);
                        }
                    }
                });
            }
            acquireFailed(threadId);
            return false;
        }

        try {
            time -= (System.currentTimeMillis() - current);
            if (time <= 0) {
                acquireFailed(threadId);
                return false;
            }
        
            while (true) {
                long currentTime = System.currentTimeMillis();
                ttl = tryAcquire(leaseTime, unit, threadId);
                // lock acquired
                if (ttl == null) {
                    return true;
                }

                time -= (System.currentTimeMillis() - currentTime);
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }

                // waiting for message
                currentTime = System.currentTimeMillis();
                if (ttl >= 0 && ttl < time) {
                    getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
                } else {
                    getEntry(threadId).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);
                }

                time -= (System.currentTimeMillis() - currentTime);
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }
            }
        } finally {
            unsubscribe(subscribeFuture, threadId);
        }
//        return get(tryLockAsync(waitTime, leaseTime, unit));
    }

首先咱們看到調用tryAcquire嘗試獲取鎖,在這裏是否能獲取到鎖,是根據鎖名稱的過時時間TTL來斷定的(TTL<=0:則說明該鎖不存在或者已經超時,此時獲取鎖成功。TTL>0:則說明該鎖被其餘現成持有,此時獲取鎖失敗);線程

下面咱們接着看一下tryAcquire的實現:blog

private Long tryAcquire(long leaseTime, TimeUnit unit, long threadId) {
    return get(tryAcquireAsync(leaseTime, unit, threadId));
}

能夠看到真正獲取鎖的操做通過一層get操做裏面執行的,這裏爲什麼要這麼操做,本人也不是太理解,若有理解錯誤,歡迎指正。繼承

get 是由CommandAsyncExecutor(一個線程Executor)封裝的一個Executor

設置一個單線程的同步控制器CountDownLatch,用於控制單個線程的中斷信息。我的理解通過中間的這麼一步:主要是爲了支持線程可中斷操做。接口

public <V> V get(RFuture<V> future) {
    if (!future.isDone()) {
        final CountDownLatch l = new CountDownLatch(1);
        future.addListener(new FutureListener<V>() {
            @Override
            public void operationComplete(Future<V> future) throws Exception {
                l.countDown();
            }
        });
        
        boolean interrupted = false;
        while (!future.isDone()) {
            try {
                l.await();
            } catch (InterruptedException e) {
                interrupted = true;
            }
        }
        
        if (interrupted) {
            Thread.currentThread().interrupt();
        }
    }

    // commented out due to blocking issues up to 200 ms per minute for each thread:因爲每一個線程的阻塞問題,每分鐘高達200毫秒
    // future.awaitUninterruptibly();
    if (future.isSuccess()) {
        return future.getNow();
    }

    throw convertException(future);
}

 

咱們進一步往下看:get

private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) {
    if (leaseTime != -1) {
        return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
    }
    RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
    ttlRemainingFuture.addListener(new FutureListener<Long>() {
        @Override
        public void operationComplete(Future<Long> future) throws Exception {
            if (!future.isSuccess()) {
                return;
            }

            Long ttlRemaining = future.getNow();
            // lock acquired
            if (ttlRemaining == null) {
                scheduleExpirationRenewal(threadId);
            }
        }
    });
    return ttlRemainingFuture;
}

首先判斷鎖是否有超時時間,有過時時間的話,會在後面獲取鎖的時候設置進去。沒有過時時間的話,則會用默認的同步

private long lockWatchdogTimeout = 30 * 1000;

下面咱們在進一步往下分析真正獲取鎖的操做:

<T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
    internalLockLeaseTime = unit.toMillis(leaseTime);

    return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
              "if (redis.call('exists', KEYS[1]) == 0) then " +
                  "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                  "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "return redis.call('pttl', KEYS[1]);",
                Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
}

我把裏面的重點信息作了如下三點總結:

1:真正執行的是一段具備原子性的Lua腳本,而且最終也是由CommandAsynExecutor去執行。

2:鎖真正持久化到Redis時,用的hash類型key field value

3:獲取鎖的三個參數:getName()是邏輯鎖名稱,例如:分佈式鎖要鎖住的methodName+params;internalLockLeaseTime是毫秒單位的鎖過時時間;getLockName則是鎖對應的線程級別的名稱,由於支持相同線程可重入,不一樣線程不可重入,因此這裏的鎖的生成方式是:UUID+":"threadId。有的同窗可能會問,這樣不是很縝密:不一樣的JVM可能會生成相同的threadId,因此Redission這裏加了一個區分度很高的UUID;

Lua腳本中的執行分爲如下三步:

1:exists檢查redis中是否存在鎖名稱;若是不存在,則獲取成功;同時把邏輯鎖名稱KEYS[1],線程級別的鎖名稱[ARGV[2],value=1,設置到redis。並設置邏輯鎖名稱的過時時間ARGV[2],返回;

2:若是檢查到存在KEYS[1],[ARGV[2],則說明獲取成功,此時會自增對應的value值,記錄重入次數;並更新鎖的過時時間

3:key不存,直接返回key的剩餘過時時間(-2)

鎖獲取失敗、解鎖過程後在後面的文章繼續補充

相關文章
相關標籤/搜索