Given a set of N
people (numbered 1, 2, ..., N
), we would like to split everyone into two groups of any size.html
Each person may dislike some other people, and they should not go into the same group. java
Formally, if dislikes[i] = [a, b]
, it means it is not allowed to put the people numbered a
and b
into the same group.git
Return true
if and only if it is possible to split everyone into two groups in this way.github
Example 1:數組
Input: N = 4, dislikes = [[1,2],[1,3],[2,4]] Output: true Explanation: group1 [1,4], group2 [2,3]
Example 2:數據結構
Input: N = 3, dislikes = [[1,2],[1,3],[2,3]] Output: false
Example 3:函數
Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]] Output: false
Note:post
1 <= N <= 2000
0 <= dislikes.length <= 10000
1 <= dislikes[i][j] <= N
dislikes[i][0] < dislikes[i][1]
i != j
for which dislikes[i] == dislikes[j]
.
解法一:this
class Solution { public: bool possibleBipartition(int N, vector<vector<int>>& dislikes) { vector<vector<int>> g(N + 1, vector<int>(N + 1)); for (auto dislike : dislikes) { g[dislike[0]][dislike[1]] = 1; g[dislike[1]][dislike[0]] = 1; } vector<int> colors(N + 1); for (int i = 1; i <= N; ++i) { if (colors[i] == 0 && !helper(g, i, 1, colors)) return false; } return true; } bool helper(vector<vector<int>>& g, int cur, int color, vector<int>& colors) { colors[cur] = color; for (int i = 0; i < g.size(); ++i) { if (g[cur][i] == 1) { if (colors[i] == color) return false; if (colors[i] == 0 && !helper(g, i, -color, colors)) return false; } } return true; } };
class Solution { public: bool possibleBipartition(int N, vector<vector<int>>& dislikes) { vector<vector<int>> g(N + 1); for (auto dislike : dislikes) { g[dislike[0]].push_back(dislike[1]); g[dislike[1]].push_back(dislike[0]); } vector<int> colors(N + 1); for (int i = 1; i <= N; ++i) { if (colors[i] != 0) continue; colors[i] = 1; queue<int> q{{i}}; while (!q.empty()) { int t = q.front(); q.pop(); for (int cur : g[t]) { if (colors[cur] == colors[t]) return false; if (colors[cur] == 0) { colors[cur] = -colors[t]; q.push(cur); } } } } return true; } };
class Solution { public: bool possibleBipartition(int N, vector<vector<int>>& dislikes) { unordered_map<int, vector<int>> g; for (auto dislike : dislikes) { g[dislike[0]].push_back(dislike[1]); g[dislike[1]].push_back(dislike[0]); } vector<int> root(N + 1); for (int i = 1; i <= N; ++i) root[i] = i; for (int i = 1; i <= N; ++i) { if (!g.count(i)) continue; int x = find(root, i), y = find(root, g[i][0]); if (x == y) return false; for (int j = 1; j < g[i].size(); ++j) { int parent = find(root, g[i][j]); if (x == parent) return false; root[parent] = y; } } return true; } int find(vector<int>& root, int i) { return root[i] == i ? i : find(root, root[i]); } };
Github 同步地址:url
相似題目:
https://leetcode.com/problems/possible-bipartition/
https://leetcode.com/problems/possible-bipartition/discuss/159085/java-graph
https://leetcode.com/problems/possible-bipartition/discuss/195303/Java-Union-Find
https://leetcode.com/problems/possible-bipartition/discuss/158957/Java-DFS-solution