JavaShuo
欄目
標籤
(EmotiW2016)Video-based emotion recognition using CNNRNN and C3D hybrid networks
時間 2021-01-11
標籤
深度學習
論文
EmotiW
欄目
C&C++
简体版
原文
原文鏈接
Introduction 本文主要利用了RNN和C3D解決視頻分類問題,其中RNN將CNN從每個視頻幀中提取出來的特徵進行時序上的編碼,C3D對人臉表徵和運動信息同時建模,最後再融合音頻特徵,完成視頻分類。本文以59.02%的正確率較EmotiW 2015 53.8%的正確率高出許多。 Model 整體模型如圖1,該模型主要由三個子模型組成:CNN-RNN,C3D和
>>阅读原文<<
相關文章
1.
EmotiW2016第一論文Video-based emotion recognition using CNNRNN and C3D hybrid networks
2.
深度學習文章閱讀3--Video-based emotion recognition using CNNRNN and C3D hybrid networks
3.
Emotion Recognition Using Graph Convolutional Networks
4.
論文閱讀-----DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Networks
5.
2018 Interspeech On Enhancing Speech Emotion Recognition using Generative Adversarial Networks
6.
SemEval2019Task3_ERC | (6) Hybrid Features for Emotion Recognition in Textual Conversation
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
Multimodal Gesture Recognition Using 3-D Convolution and Convolutional LSTM
10.
Recurrent Neural Networks for Emotion Recognition in Video
更多相關文章...
•
W3C RDF and OWL 活動
-
W3C 教程
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
RxJava操作符(六)Utility
相關標籤/搜索
networks
recognition
c3d
emotion
using
hybrid
action.....and
between...and
using&n
platform..using
Hybrid
C&C++
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
網絡層協議以及Ping
2.
ping檢測
3.
爲開發者總結了Android ADB 的常用十種命令
4.
3·15 CDN維權——看懂第三方性能測試指標
5.
基於 Dawn 進行多工程管理
6.
缺陷的分類
7.
阿里P8內部絕密分享:運維真經K8S+Docker指南」,越啃越香啊,寶貝
8.
本地iis部署mvc項目,問題與總結
9.
InterService+粘性服務+音樂播放器
10.
把tomcat服務器配置爲windows服務的方法
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
EmotiW2016第一論文Video-based emotion recognition using CNNRNN and C3D hybrid networks
2.
深度學習文章閱讀3--Video-based emotion recognition using CNNRNN and C3D hybrid networks
3.
Emotion Recognition Using Graph Convolutional Networks
4.
論文閱讀-----DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Networks
5.
2018 Interspeech On Enhancing Speech Emotion Recognition using Generative Adversarial Networks
6.
SemEval2019Task3_ERC | (6) Hybrid Features for Emotion Recognition in Textual Conversation
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
Multimodal Gesture Recognition Using 3-D Convolution and Convolutional LSTM
10.
Recurrent Neural Networks for Emotion Recognition in Video
>>更多相關文章<<