基於tensorflow的驗證碼識別

  基於tensorflow的驗證碼識別

 

背景介紹:java

 

驗證碼圖片樣例: python

python庫: tensorflow, opencv, pandas, gpu機器。git

訓練集: 10w 圖片,  200step左右開始收斂。網絡

策略: 切分圖片,訓練單字母識別。預測時也是一樣切分。(ps:不切分訓練及識別,跑了一晚上,沒有收斂)app

準確率: 在區分大小寫的狀況下,單字母識別率98%, 總體識別率75%+。dom

 

訓練集生成代碼(大部分驗證碼都是插件生成,儘可能找到生成方式,否則標註會很費力):ide

package com;
import java.awt.Color;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Random;

import org.patchca.color.ColorFactory;
import org.patchca.filter.predefined.CurvesRippleFilterFactory;
import org.patchca.filter.predefined.DiffuseRippleFilterFactory;
import org.patchca.filter.predefined.DoubleRippleFilterFactory;
import org.patchca.filter.predefined.MarbleRippleFilterFactory;
import org.patchca.filter.predefined.WobbleRippleFilterFactory;
import org.patchca.service.ConfigurableCaptchaService;
import org.patchca.utils.encoder.EncoderHelper;
import org.patchca.word.RandomWordFactory;

public class CreatePatcha {
	private static Random random = new Random();
	private static ConfigurableCaptchaService cs = new ConfigurableCaptchaService();
	static {
		// cs.setColorFactory(new SingleColorFactory(new Color(25, 60, 170)));
		cs.setColorFactory(new ColorFactory() {
			@Override
			public Color getColor(int x) {
				int[] c = new int[3];
				int i = random.nextInt(c.length);
				for (int fi = 0; fi < c.length; fi++) {
					if (fi == i) {
						c[fi] = random.nextInt(71);
					} else {
						c[fi] = random.nextInt(256);
					}
				}
				return new Color(c[0], c[1], c[2]);
			}
		});
		RandomWordFactory wf = new RandomWordFactory();
//		wf.setCharacters("23456789abcdefghigklmnpqrstuvwxyzABCDEFGHIGKLMNPQRSTUVWXYZ");
		wf.setCharacters("0123456789abcdefghigklmnopqrstuvwxyzABCDEFGHIGKLMNOPQRSTUVWXYZ");
		wf.setMaxLength(4);
		wf.setMinLength(4);
		
		cs.setWordFactory(wf);
	}

	public static void main(String[] args) throws IOException {
		for (int i = 0; i < 100; i++) {
			switch (random.nextInt(5)) {
			case 0:
				cs.setFilterFactory(new CurvesRippleFilterFactory(cs
						.getColorFactory()));
				break;
			case 1:
				cs.setFilterFactory(new MarbleRippleFilterFactory());
				break;
			case 2:
				cs.setFilterFactory(new DoubleRippleFilterFactory());
				break;
			case 3:
				cs.setFilterFactory(new WobbleRippleFilterFactory());
				break;
			case 4:
				cs.setFilterFactory(new DiffuseRippleFilterFactory());
				break;
			}

			OutputStream out = new FileOutputStream(new File(i + ".png"));
			String token = EncoderHelper.getChallangeAndWriteImage(cs, "png",
					out);
			out.close();
			File f = new File(i+".png");
			f.renameTo(new File("checkdata/" + token +"_" + i+".png"));
			System.out.println(i+"驗證碼=" + token);
		}
	}
}

  

基於tf的神經網絡訓練代碼(文件1讀取訓練集):性能

#coding:utf-8
# from captcha.image import ImageCaptcha  # pip install captcha
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import random,time

# 驗證碼中的字符, 就不用漢字了
number = ['0','1','2','3','4','5','6','7','8','9']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
global total_index
total_index = 0
global total_index_test
total_index_test = 0
import os.path

testDir = "testchars_padding"
trainDir = "trainchars_padding"

fileList = os.listdir(trainDir)
testFileList = os.listdir(testDir)
# 驗證碼通常都無視大小寫;驗證碼長度4個字符
def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4):
    captcha_text = []
    for i in range(captcha_size):
        c = random.choice(char_set)
        captcha_text.append(c)
    return captcha_text

# 生成字符對應的驗證碼
def gen_captcha_text_and_image(train=True):

    global total_index
    global total_index_test
    if train:
        dir = trainDir
        captcha_text = fileList[total_index][5:6]
        captcha_image = Image.open(dir + "/" + fileList[total_index]).convert("RGB")
        captcha_image = np.array(captcha_image)
        total_index = (total_index + 1) % len(fileList)
        if(total_index % 10000 == 0):
            print('total_index:%d' % (total_index))
    else:
        dir = testDir
        # print(total_index_test)
        captcha_text = testFileList[total_index_test][5:6]
        captcha_image = Image.open(dir + "/" + testFileList[total_index_test]).convert("RGB")
        captcha_image = np.array(captcha_image)
        total_index_test = (total_index_test + 1) % len(testFileList)

    return captcha_text, captcha_image

基於tf的神經網絡訓練代碼(文件2,模型及訓練):編碼

 
 
#coding:utf-8
from gen_captcha import gen_captcha_text_and_image
from gen_captcha import number
from gen_captcha import alphabet
from gen_captcha import ALPHABET

import numpy as np
import tensorflow as tf
import os

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

text, image = gen_captcha_text_and_image()
print("驗證碼圖像channel:", image.shape) # (70, 160, 3)
# 圖像大小
IMAGE_HEIGHT = 70
IMAGE_WIDTH = 70
MAX_CAPTCHA = len(text)
print("驗證碼文本最長字符數", MAX_CAPTCHA) # 驗證碼最長4字符; 我所有固定爲4,能夠不固定. 若是驗證碼長度小於4,用'_'補齊

# 把彩色圖像轉爲灰度圖像(色彩對識別驗證碼沒有什麼用)
def convert2gray(img):
if len(img.shape) > 2:
gray = np.mean(img, -1)
# 上面的轉法較快,正規轉法以下
# r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
# gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
else:
return img

"""
cnn在圖像大小是2的倍數時性能最高, 若是你用的圖像大小不是2的倍數,能夠在圖像邊緣補無用像素。
np.pad(image【,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在圖像上補2行,下補3行,左補2行,右補2行
"""

# 文本轉向量
# char_set = number + alphabet + ALPHABET + ['_'] # 若是驗證碼長度小於4, '_'用來補齊
char_set = number + alphabet + ALPHABET # 若是驗證碼長度小於4, '_'用來補齊
CHAR_SET_LEN = len(char_set) #26*2+10+1=63
def text2vec(text):
text_len = len(text)
if text_len > MAX_CAPTCHA:
raise ValueError('驗證碼最長4個字符')

vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
def char2pos(c):
if c =='_':
k = 62
return k
k = ord(c)-48
if k > 9:
k = ord(c) - 55
if k > 35:
k = ord(c) - 61
if k > 61:
raise ValueError('No Map')
return k
for i, c in enumerate(text):
idx = i * CHAR_SET_LEN + char2pos(c)
vector[idx] = 1
return vector
# 向量轉回文本
def vec2text(vec):
char_pos = vec.nonzero()[0]
text=[]
for i, c in enumerate(char_pos):
char_at_pos = i #c/63
char_idx = c % CHAR_SET_LEN
if char_idx < 10:
char_code = char_idx + ord('0')
elif char_idx <36:
char_code = char_idx - 10 + ord('A')
elif char_idx < 62:
char_code = char_idx- 36 + ord('a')
elif char_idx == 62:
char_code = ord('_')
else:
raise ValueError('error')
text.append(chr(char_code))
return "".join(text)

"""
#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1編碼 每63個編碼一個字符,這樣順利有,字符也有
vec = text2vec("F5Sd")
text = vec2text(vec)
print(text) # F5Sd
vec = text2vec("SFd5")
text = vec2text(vec)
print(text) # SFd5
"""

# 生成一個訓練batch
def get_next_batch(batch_size=128, train = True):
batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])

# 有時生成圖像大小不是(70, 160, 3)
def wrap_gen_captcha_text_and_image(train):
while True:
text, image = gen_captcha_text_and_image(train)
if image.shape == (70, 70, 3):
return text, image

for i in range(batch_size):
text, image = wrap_gen_captcha_text_and_image(train)
image = convert2gray(image)

batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128 mean爲0
batch_y[i,:] = text2vec(text)

return batch_x, batch_y

####################################################################

X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # dropout

# 定義CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

#w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
#w_c2_alpha = np.sqrt(2.0/(3*3*32))
#w_c3_alpha = np.sqrt(2.0/(3*3*64))
#w_d1_alpha = np.sqrt(2.0/(8*32*64))
#out_alpha = np.sqrt(2.0/1024)

# 3 conv layer
w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))
b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob)

w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))
b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)

w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)

# Fully connected layer
w_d = tf.Variable(w_alpha*tf.random_normal([9*9*64, 1024]))
b_d = tf.Variable(b_alpha*tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob)

w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
#out = tf.nn.softmax(out)
return out

# 訓練
def train_crack_captcha_cnn():
output = crack_captcha_cnn()
# loss
#loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
with tf.device('/gpu:0'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y))
# 最後一層用來分類的softmax和sigmoid有什麼不一樣?
# optimizer 爲了加快訓練 learning_rate應該開始大,而後慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)

predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

saver = tf.train.Saver()
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())

step = 0
while True:
batch_x, batch_y = get_next_batch(256)
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})


# 每100 step計算一次準確率
if step % 100 == 0:
batch_x_test, batch_y_test = get_next_batch(100, False)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
print('step:%d,loss:%g' % (step, loss_))
print('step:%d,acc:%g'%(step, acc))
# 若是準確率大於50%,保存模型,完成訓練
if acc > 0.98:
saver.save(sess, "crack_capcha.model", global_step=step)
break
step += 1

def crack_captcha(captcha_image):
output = crack_captcha_cnn()

saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('.'))

predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})

text = text_list[0].tolist()
vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
i = 0
for n in text:
vector[i*CHAR_SET_LEN + n] = 1
i += 1
return vec2text(vector)

if __name__ == '__main__':

#text, image = gen_captcha_text_and_image()
#image = convert2gray(image)
#image = image.flatten() / 255
#predict_text = crack_captcha(image)
#print("正確: {} 預測: {}".format(text, predict_text))
train_crack_captcha_cnn()

 

 

基於tf的神經網絡訓練代碼(文件3,驗證結果):spa

#coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import random,time
import tensorflow as tf
import os.path
import cv2
from pandas import DataFrame
from tensorflow_cnn import crack_captcha_cnn
from tensorflow_cnn import X
from tensorflow_cnn import Y
from tensorflow_cnn import keep_prob
from tensorflow_cnn import convert2gray

os.environ["CUDA_VISIBLE_DEVICES"] = "3"
number = ['0','1','2','3','4','5','6','7','8','9']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']

# 圖像大小
IMAGE_HEIGHT = 70
IMAGE_WIDTH = 70
MAX_CAPTCHA = 1
char_set = number + alphabet + ALPHABET # 若是驗證碼長度小於4, '_'用來補齊
CHAR_SET_LEN = len(char_set) #26*2+10+1=63

def splitImage(item):
    img = cv2.imread(item, 0)
    retval, img_black = cv2.threshold(img, 250, 255, cv2.THRESH_BINARY)
    img_black = cv2.bitwise_not(img_black)
    # cv2.imwrite('../test'+item[:-4]+'_black'+item[-4:],img_black)

    img_black = DataFrame(img_black)
    img_black.ix[70] = img_black.sum() / 255

    numlist1 = [i + 25 for i in range(31)]
    numlist2 = [i + 65 for i in range(31)]
    numlist3 = [i + 105 for i in range(31)]

    def getpoint(ser, m):

        p = []
        if m == 0:
            for i in range(len(ser)):
                if i in numlist1 and ser[i] <= m:
                    p.append(i)

                if i in numlist2 and ser[i] <= m:
                    p.append(i)

                if i in numlist3 and ser[i] <= m:
                    p.append(i)
        else:
            for i in range(len(ser)):
                if i in numlist1 and ser[i - 1] <= m and ser[i] <= m and ser[i + 1] <= m:
                    p.append(i)

                if i in numlist2 and ser[i - 1] <= m and ser[i] <= m and ser[i + 1] <= m:
                    p.append(i)

                if i in numlist3 and ser[i - 1] <= m and ser[i] <= m and ser[i + 1] <= m:
                    p.append(i)

            try:
                p1 = []
                p2 = []
                p3 = []
                for i in p:
                    if i <= 60:
                        p1.append(i)
                    if i > 60 and i <= 100:
                        p2.append(i)
                    if i > 100:
                        p3.append(i)
                s1 = p1[int(len(p1) / 2)]
                s2 = p2[int(len(p2) / 2)]
                s3 = p3[int(len(p3) / 2)]
            except:
                s1, s2, s3 = 40, 80, 120

            return [s1, s2, s3]

    s = getpoint(img_black.ix[70], 0)
    if s == None:
        s = getpoint(img_black.ix[70], 8)

    img = cv2.imread(item)

    # img1 = Image.fromarray((img[:, 0:s[0], :]))
    # img2 = Image.fromarray((img[:, s[0]:s[1], :]))
    # img3 = Image.fromarray((img[:, s[1]:s[2], :]))
    # img4 = Image.fromarray((img[:, s[2]:, :]))
    img1 = (img[:, 0:s[0], :])
    img2 = (img[:, s[0]:s[1], :])
    img3 = (img[:, s[1]:s[2], :])
    img4 = (img[:, s[2]:, :])
    return [padding(img1), padding(img2), padding(img3), padding(img4)]

def get_imlist(path):
    return [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.png')]
def padding(img):
    # img = cv2.imread(item)
    base = np.zeros(4900 * 3).reshape((IMAGE_HEIGHT, IMAGE_WIDTH, 3))
    base += 255
    m = img.shape[1]
    start = int((70 - m) / 2)
    end = start + m
    base[:, start:end, :] = img
    return base
# 向量轉回文本
def vec2text(vec):
    char_pos = vec.nonzero()[0]
    text=[]
    for i, c in enumerate(char_pos):
        char_at_pos = i #c/63
        char_idx = c % CHAR_SET_LEN
        if char_idx < 10:
            char_code = char_idx + ord('0')
        elif char_idx <36:
            char_code = char_idx - 10 + ord('A')
        elif char_idx < 62:
            char_code = char_idx-  36 + ord('a')
        elif char_idx == 62:
            char_code = ord('_')
        else:
            raise ValueError('error')
        text.append(chr(char_code))
    return "".join(text)

if __name__ == '__main__':

    output = crack_captcha_cnn()
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('.'))
        imglist = get_imlist('./data/')
        total = 0
        right = 0
        for item in imglist:
            print("*************************************: {}".format(item))
            imgs = splitImage(item)
            str = ""
            for img in imgs:
                # image = Image.fromarray(img)
                image = convert2gray(img)
                image = image.flatten() / 255
                predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
                text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1})

                text = text_list[0].tolist()
                vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
                i = 0
                for n in text:
                    vector[i * CHAR_SET_LEN + n] = 1
                    i += 1
                predict_text =  vec2text(vector)
                str = str + predict_text
            total = total + 1
            if(str in item):
                right = right + 1
            print("正確: {}  預測: {} 結果: {} 正確: {} 總數: {}".format(item, str, str in item, right, total))

 

結果:

 

參考:https://zhuanlan.zhihu.com/p/25779608?group_id=825335754321457152

相關文章
相關標籤/搜索