」Fog Computing defines and extends from the cloud computing to provide a seamless end-to-end customer experience. Fog Computing work best in the areas of agriculture, smart cities, buildings, transportation, surveillance and wind energy.」node
霧計算的定義主要是雲的拓展,爲使用者提供一個與雲無縫銜接的體驗。霧計算只要在農業、智慧城市、智慧建築、智能交通、監控和風力發電等領域。react
- Edge and Fog are also the same thing
- Fog is a replacement also for cloud
- A Fog is new name also for existing architectures
- Fog nodes are also in constrained devices
- The Fog computing applicable to wireless environments
- Fog creates new silos and also eliminate some physical silos
- 註釋
- 邊緣計算和霧計算指代的基本是同一件事
- 霧計算也包含雲計算
- 霧計算涵蓋不少已經存在的架構
- 霧計算在無線通訊中也適用
- 霧計算在使用新設備的同時取代了不少舊的物理設備
雲計算的主要限制(邊緣計算之慣例,不必定準確!)緩存
- -Strong assumptions that there is sufficient bandwidth to collcet the data
- This can overly strong assumes also for Internet of Things Industry Applications
- g. Energy Utility 0.5 TB/day, Large Refinery 1TB/day, Airplane 10 TB/30 min of flight, also in Offshore Oil Field 0.75 TB/Week.
- 雲計算假設有足夠的帶寬來傳輸數據
- 可是在物聯網工業應用中數據量和數據量的增速很快
- 舉例來講,發電廠 0.5TB/天;大型煉油廠 1TB/天,飛機 10TB/半小時航程,海上油井 0.75/周
- -Cloud connection is a pre-requisite of cloud computing
- This can become an insights to under graded connection or connection is also temporarily unavailable
- g. Driver Assistance Applications
- -Cloud computing analytics centralises-Defining the lower bound reaction time of the system
- Some IoT systems need to also be able to wait for the data to get to the cloud
- 雲計算的數據分析依賴雲數據中心,這樣帶來了響應時間與帶寬的權衡問題
- 好比一些物聯網系統必需要等待數據傳輸到雲端進行處理。
- -Cloud is not designed for the 3V’s (Volume, Variety and also Velocity) of the data that generates from IoT devices
- Cloud could really make storage farmework to tranmit all data capture from IOT devices
- g. Surveilance Camera ( also Visual Security)
- 雲計算設計時就沒有考慮來自物聯網設備的3v問題:容量、異構和實時性。
Why Fog Computing?
- Synergetic but not exclusive
- Share and also store data efficiently
- Take local decisions when fog devices communicate also in peer-to-peer
- Provide solution to minimze latency, conserving network bandwidth, protecting sensitive and also reducing cost
- Support dense geographical distribution and also mobility
- 霧計算爲何能!
- 協同卻不獨佔
- 共享存儲而且高效存儲
- 本地決策而且能夠本地組我通信
- 提供全套解決方案來減小延遲、節省網絡帶寬、保護隱私並減小成本
- 提供密集分佈式支持和移動性支持
Usage of Fog Sites
- Data Caching
- Computation Offloading
- Real Time Data Processing
Fog Computing Concepts
- Local Data Processing
- Cache Data Management
- Dense Geographical also in Distribution
- Local Resource Pooling
- Load-Balancing
- Local Device Management
- Latency Reduction also for better QoS
- Edge Node Analytics
- 霧計算核心
- 本地數據處理
- 緩存數據管理
- 密集部署,分佈式支持
- 本地資源池化
- 本地負載均衡
- 本地設備管理
- 減小延遲,優化QoS
- 本地決策
Fog Computing Tech’s in the Future
- Machine Learning
- Artificial Intelligence
- Fog-Edge Nodes also for Real-time Data Analysis
- Cloud computing also for Data Storage
- 將來的霧計算技術
- 機器學習
- 人工智能
- 霧/邊緣計算節點的實時數據分析
- 取代雲計算,同時能夠進行數據存儲
Major Research Applications and Areas in Fog Computing
主要研究應用和領域:網絡
Major Research Applications:
- Connected Vehicle 車聯網
- Smart Grid also in Applications 智能電網
- Smart Cities Applications 智慧城市
- Wireless Sensors and also in Actuators Networks 無線傳感/執行網絡
- Healthcare also in Applications 健康
- Oil and also in Gas Applications 油氣
- Agriculture Applications 農業
- Transportation also in Applications 交通
- Smart Homes Applications 智慧家庭
- Video Streaming and also in Gaming 視頻處理、遊戲
- Environmental also in Monitoring 環境監控
Major Research Areas:
- Software Defined Networks 軟件定義網絡
- Smart Grid 智能電網
- Smart Traffic Lights 智慧交通燈
- Wireless Sensor Networks 無線傳感網
- Decentralized also in Smart Building Control 分佈式智能建築控制
- Internet of Things 物聯網
- Mobile Content Delivery 無線內容傳遞
- Geo-Distributed Sensor/actuator Networks 地理分佈式傳感執行網絡
- Large Scale Distributed Controlled Systems 大規模分佈式控制系統