暫時不糾結 faster rcnn 最後一步是否是全鏈接層(gluoncv裏面是rcnn層);ide
說一下feature map 和 anchor (Proposal) 做爲輸入,怎麼計算ROIPooing ,怎麼對應的。spa
例:code
anchor [0,0,0,20,20] 縮放後是 3*3,ROIPooing 2*2,feature map 4*4;blog
from mxnet import nd X = nd.arange(16).reshape((1,1,4,4)) print(X) rois = nd.array([[0,0,0,20,20],[0,0,10,30,30]]) print(nd.ROIPooling(X,rois,pooled_size=(2,2),spatial_scale=0.1))
這在gluoncv裏面是一樣的寫法:默認_roi_size = (14,14)io
# ROI features if self._roi_mode == 'pool': pooled_feat = F.ROIPooling(feat, rpn_roi, self._roi_size, 1. / self._stride) elif self._roi_mode == 'align': pooled_feat = F.contrib.ROIAlign(feat, rpn_roi, self._roi_size, 1. / self._stride, sample_ratio=2)
以後能夠來一個完整的gluoncv 的 faster rcnn 的 forward 計算的分析 ^_^ast