使用Python實現Hadoop MapReduce程序

筆者的機器運行效果以下(輸入數據是find的幫助手冊,和筆者預期同樣,the是最多的):html


--------------------------------------如下是原帖---------------------------------python

  • 在這個實例中,我將會向你們介紹如何使用Python 爲 Hadoop編寫一個簡單的MapReduce
    linux

    程序。
    儘管Hadoop 框架是使用Java編寫的可是咱們仍然須要使用像C++、Python等語言來實現 Hadoop程序。儘管Hadoop官方網站給的示例程序是使用Jython編寫並打包成Jar文件,這樣顯然形成了不便,其實,不必定非要這樣來實現,咱們可使用Python與Hadoop 關聯進行編程,看看位於/src/examples/python/WordCount.py  的例子,你將瞭解到我在說什麼。

    咱們想要作什麼?

    咱們將編寫一個簡單的 MapReduce 程序,使用的是C-Python,而不是Jython編寫後打包成jar包的程序。
    咱們的這個例子將模仿 WordCount 並使用Python來實現,例子經過讀取文本文件來統計出單詞的出現次數。結果也以文本形式輸出,每一行包含一個單詞和單詞出現的次數,二者中間使用製表符來想間隔。

    先決條件

    編寫這個程序以前,你學要架設好Hadoop 集羣,這樣才能不會在後期工做抓瞎。若是你沒有架設好,那麼在後面有個簡明教程來教你在Ubuntu Linux 上搭建(一樣適用於其餘發行版linux、unix)

    如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 創建單節點的 Hadoop 集羣

    如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 創建多節點的 Hadoop 集羣


    Python的MapReduce代碼


    使用Python編寫MapReduce代碼的技巧就在於咱們使用了 HadoopStreaming 來幫助咱們在Map 和 Reduce間傳遞數據經過STDIN (標準輸入)和STDOUT (標準輸出).咱們僅僅使用Python的sys.stdin來輸入數據,使用sys.stdout輸出數據,這樣作是由於HadoopStreaming會幫咱們辦好其餘事。這是真的,別不相信!

    apache

    Map: mapper.py


    將下列的代碼保存在/home/hadoop/mapper.py中,他將從STDIN讀取數據並將單詞成行分隔開,生成一個列表映射單詞與發生次數的關係:
    注意:要確保這個腳本有足夠權限(chmod +x /home/hadoop/mapper.py)。

    編程

    #!/usr/bin/env python
     
    import sys
     
    # input comes from STDIN (standard input)
    for line in sys.stdin:
        # remove leading and trailing whitespace
        line = line.strip()
        # split the line into words
        words = line.split()
        # increase counters
        for word in words:
            # write the results to STDOUT (standard output);
            # what we output here will be the input for the
            # Reduce step, i.e. the input for reducer.py
            #
            # tab-delimited; the trivial word count is 1
            print '%s\\t%s' % (word, 1)

    在這個腳本中,並不計算出單詞出現的總數,它將輸出 "<word> 1" 迅速地,儘管<word>可能會在輸入中出現屢次,計算是留給後來的Reduce步驟(或叫作程序)來實現。固然你能夠改變下編碼風格,徹底尊重你的習慣。

    ubuntu

    Reduce: reducer.py


    將代碼存儲在/home/hadoop/reducer.py 中,這個腳本的做用是從mapper.py 的STDIN中讀取結果,而後計算每一個單詞出現次數的總和,並輸出結果到STDOUT。
    一樣,要注意腳本權限:chmod +x /home/hadoop/reducer.py

    瀏覽器

    #!/usr/bin/env python
     
    from operator import itemgetter
    import sys
     
    # maps words to their counts
    word2count = {}
     
    # input comes from STDIN
    for line in sys.stdin:
        # remove leading and trailing whitespace
        line = line.strip()
     
        # parse the input we got from mapper.py
        word, count = line.split('\\t', 1)
        # convert count (currently a string) to int
        try:
            count = int(count)
            word2count[word] = word2count.get(word, 0) + count
        except ValueError:
            # count was not a number, so silently
            # ignore/discard this line
            pass
     
    # sort the words lexigraphically;
    #
    # this step is NOT required, we just do it so that our
    # final output will look more like the official Hadoop
    # word count examples
    sorted_word2count = sorted(word2count.items(), key=itemgetter(0))
     
    # write the results to STDOUT (standard output)
    for word, count in sorted_word2count:
        print '%s\\t%s'% (word, count)


    測試你的代碼(cat data | map | sort | reduce)


    我建議你在運行MapReduce job測試前嘗試手工測試你的mapper.py 和 reducer.py腳本,以避免得不到任何返回結果
    這裏有一些建議,關於如何測試你的Map和Reduce的功能:
    app

    ——————————————————————————————————————————————

    \r\n
    框架

     # very basic test
     hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py
     foo     1
     foo     1
     quux    1
     labs    1
     foo     1
     bar     1
    ——————————————————————————————————————————————
     hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/reducer.py
     bar     1
     foo     3
     labs    1
    ——————————————————————————————————————————————
    
     # using on[object Object]e of the ebooks as example input
     # (see below on where to get the ebooks)
     hadoop@ubuntu:~$ cat /tmp/gutenberg/20417-8.txt | /home/hadoop/mapper.py
     The     1
     Project 1
     Gutenberg       1
     EBook   1
     of      1
     [...] 
     (you get the idea)
    
     quux    2
    
     quux    1


    ——————————————————————————————————————————————
    
    
    
    爲了這個例子,咱們將須要三種電子書:

    下載他們,並使用us-ascii編碼存儲 解壓後的文件,保存在臨時目錄,好比/tmp/gutenberg.

    ide

     hadoop@ubuntu:~$ ls -l /tmp/gutenberg/
     total 3592
     -rw-r--r-- 1 hadoop hadoop  674425 2007-01-22 12:56 20417-8.txt
     -rw-r--r-- 1 hadoop hadoop 1423808 2006-08-03 16:36 7ldvc10.txt
     -rw-r--r-- 1 hadoop hadoop 1561677 2004-11-26 09:48 ulyss12.txt
     hadoop@ubuntu:~$
    在咱們運行MapReduce job 前,咱們須要將本地的文件複製到HDFS中:
    
     hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -copyFromLocal /tmp/gutenberg gutenberg
     hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls
     Found 1 items
     /user/hadoop/gutenberg  <dir>
     hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg
     Found 3 items
     /user/hadoop/gutenberg/20417-8.txt      <r 1>   674425
     /user/hadoop/gutenberg/7ldvc10.txt      <r 1>   1423808
     /user/hadoop/gutenberg/ulyss12.txt      <r 1>   1561677
    
    
    
    如今,一切準備就緒,咱們將在運行Python MapReduce job 在Hadoop集羣上。像我上面所說的,咱們使用的是
     幫助咱們傳遞數據在Map和Reduce間並經過STDIN和STDOUT,進行標準化輸入輸出。
    
     
     hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
     -mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/* 
    -output gutenberg-output
    在運行中,若是你想更改Hadoop的一些設置,如增長Reduce任務的數量,你可使用「-hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 
     -mapper ...
    
    一個重要的備忘是關於 
    這個任務將會讀取HDFS目錄下的HDFS目錄下的
    目錄。
    以前執行的結果以下:
    
    hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar 
    -mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/* 
    -output gutenberg-output
     
    additionalConfSpec_:null
     null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
     packageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar54543/]
     [] /tmp/streamjob54544.jar tmpDir=null
     [...] INFO mapred.FileInputFormat: Total input paths to process : 7
     [...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local]
     [...] INFO streaming.StreamJob: Running job: job_200803031615_0021
     [...]
     [...] INFO streaming.StreamJob:  map 0%  reduce 0%
     [...] INFO streaming.StreamJob:  map 43%  reduce 0%
     [...] INFO streaming.StreamJob:  map 86%  reduce 0%
     [...] INFO streaming.StreamJob:  map 100%  reduce 0%
     [...] INFO streaming.StreamJob:  map 100%  reduce 33%
     [...] INFO streaming.StreamJob:  map 100%  reduce 70%
     [...] INFO streaming.StreamJob:  map 100%  reduce 77%
     [...] INFO streaming.StreamJob:  map 100%  reduce 100%
     [...] INFO streaming.StreamJob: Job complete: job_200803031615_0021
    
    
     [...] INFO streaming.StreamJob: Output: gutenberg-output  hadoop@ubuntu:/usr/local/hadoop$ 
    
    
    正如你所見到的上面的輸出結果,Hadoop 同時還提供了一個基本的WEB接口顯示統計結果和信息。
    當Hadoop集羣在執行時,你可使用瀏覽器訪問   ,如圖:
    
    
    
    
    檢查結果是否輸出並存儲在HDFS目錄下的中:
    
     hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg-output
     Found 1 items
     /user/hadoop/gutenberg-output/part-00000     <r 1>   903193  2007-09-21 13:00
     hadoop@ubuntu:/usr/local/hadoop$ 
    
    可使用 命令檢查文件目錄
    
     hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat gutenberg-output/part-00000
     "(Lo)cra"       1
     "1490   1
     "1498," 1
     "35"    1
     "40,"   1
     "A      2
     "AS-IS".        2
     "A_     1
     "Absoluti       1
     [...]
     hadoop@ubuntu:/usr/local/hadoop$
    
    注意比輸出,上面結果的(")符號不是Hadoop插入的。
    
    
     
    
     請參考:
    
    
    http://www.michael-noll.com/wiki/Writing_An_Hadoop_MapReduce_Program_In_Python#What_we_want_to_do
相關文章
相關標籤/搜索