本文介紹瞭如何整合搜索引擎elasticsearch與springboot,對外提供數據查詢接口。前端
個人我的網站須要對mysql數據庫內存儲的京東商品進行模糊查詢(模仿淘寶商品搜索),因此選擇了將數據導入elasticsearch隨後使用他來進行關鍵詞查詢。前端只需發送用戶搜索的關鍵詞和分頁參數(可選),便可返回商品數據(json格式)java
組件介紹:node
本文測試環境:mysql
sudo docker run -it --rm --name elasticsearch -d -p 9200:9200 -p 9300:9300 elasticsearch:2.3.5
複製代碼
注意到該命令:git
獲得如圖:github
此時打開網頁localhost:9200便可查看狀態,顯示相似爲:算法
{
"name" : "Ant-Man",
"cluster_name" : "elasticsearch",
"version" : {
"number" : "2.3.5",
"build_hash" : "90f439ff60a3c0f497f91663701e64ccd01edbb4",
"build_timestamp" : "2016-07-27T10:36:52Z",
"build_snapshot" : false,
"lucene_version" : "5.5.0"
},
"tagline" : "You Know, for Search"
}
複製代碼
注意:docker的es默認對0.0.0.0公網開放spring
本文中要導入的是pm_backend下的表pm_jd_item內的所有京東商品數據sql
詳細步驟參考:docker
最終編寫的jdbc.conf爲:
schedule => "* * * * *"
默認爲每分鐘同步一次
input {
jdbc {
jdbc_connection_string => "jdbc:mysql://localhost:3306/pm_backend"
jdbc_user => "root"
jdbc_password => "xxxxxxxxxx"
jdbc_driver_library => "xxxxxxxx/mysql-connector-java-5.1.6.jar"
jdbc_driver_class => "com.mysql.jdbc.Driver"
jdbc_paging_enabled => "true"
jdbc_page_size => "5000"
statement=> "select * from pm_jd_item"
schedule => "* * * * *"
type => "pm_jd_item"
}
}
output {
elasticsearch {
hosts => "localhost:9200"
index => "pm_backend"
document_type => "%{type}"
document_id => "%{id}"
}
stdout {
codec => json_lines
}
}
複製代碼
在logstash目錄下執行命令,完成數據的導入:
bin/logstash -f jdbc.conf
複製代碼
獲得如圖:
同步完成後,使用elasticsearch-head查看(或者用kibana,請隨意):
<!-- 搜索引擎:elastic-search-->
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>2.4.6</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-elasticsearch</artifactId>
</dependency>
複製代碼
# elasticsearch
spring.data.elasticsearch.cluster-name=elasticsearch
#節點地址,多個節點用逗號隔開
spring.data.elasticsearch.cluster-nodes=127.0.0.1:9300
#spring.data.elasticsearch.local=false
spring.data.elasticsearch.repositories.enable=true
複製代碼
@Document(indexName = "pm_backend", type = "pm_jd_item")
public class JdItem implements Serializable {
@Id
private Integer id;
@Field(type = FieldType.Long)
private Long itemId;
@Field(type = FieldType.Long)
private Long categoryId;
@Field(type = FieldType.String)
private String name;
複製代碼
public interface JdItemRepository extends ElasticsearchRepository<JdItem, Integer>{
}
複製代碼
代碼截取自我的項目京東價格監控,僅供參考!
/** * 根據商品名在pm_jd_item中搜索商品 * @param itemName * @param startRow * @param pageSize * @return */
@ApiOperation(value="查詢商品", notes="查詢商品")
@RequestMapping(value = "/findJdItemByName", method = {RequestMethod.GET})
public ResponseData<List<JdItem>> findJdItemByName(
@ApiParam("用戶輸入的商品名") @RequestParam(value = "itemName") String itemName,
@ApiParam("頁碼索引(默認爲0)") @RequestParam(value = "startRow", required = false, defaultValue = "0") int startRow,
@ApiParam("每頁的商品數量(默認爲10)") @RequestParam(value = "pageSize", required = false, defaultValue = "10") int pageSize
){
ResponseData<List<JdItem>> responseData = new ResponseData<>();
try {
FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery().add(QueryBuilders.matchPhraseQuery("name", itemName), ScoreFunctionBuilders.weightFactorFunction(100)).scoreMode("sum").setMinScore(10);
Pageable pageable = new PageRequest(startRow, pageSize);
SearchQuery searchQuery = new NativeSearchQueryBuilder().withPageable(pageable).withQuery(functionScoreQueryBuilder).build();
Page<JdItem> jdItems = jdItemRepository.search(searchQuery);
// Page分頁getTotalPages()返回了應有的頁數,臨時放在errorMsg傳給前端
responseData.jsonFill(1, String.valueOf(jdItems.getTotalPages()), jdItems.getContent());
} catch (Exception e) {
e.printStackTrace();
responseData.jsonFill(2, e.getMessage(), null);
}
return responseData;
}
}
複製代碼
調用findJdItemByName接口,獲得:
Docker安裝ES & Kibana:
Elasticsearch之使用Logstash導入Mysql數據:
我是蠻三刀把刀,後端開發。主要關注後端開發,數據安全,爬蟲等方向。
來微信和我聊聊:yangzd1102
Github我的主頁:
若是文章對你有幫助,不妨收藏起來並轉發給您的朋友們~