指望得分:\(100+ 40 + 0 = 140\)
實際得分:\(100 + 40 + 0 = 140\)node
沒有掛分,可是是大衆分。。。人均\(140\)ios
這題能夠用二分答案來作git
那麼爲何能夠用二分答案呢?spa
答案固然是知足了單調性。假設用\(x\)天可以殺死全部人,那麼用大於$x $天一定也能夠殺死全部人,因此知足了單調性,咱們就能夠二分答案debug
那麼如何\(check\)呢?考慮一下貪心code
貪心思路:在二分的\(mid\)天以前找到每一個敵人暴露弱點的最後一天,只在這一天殺死此敵人,其它時間積攢體力,若在最後一天這個敵人暴露了弱點,而此時積攢的體力並不足以殺死這個敵人,則說明用\(mid\)天不能殺死全部敵人,不然就讓計數器\(cnt\)的值加一,表示如今已經殺了\(cnt\)我的,最後檢驗一下\(cnt\)是否等於\(m\),若不等於則。get
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int A = 1e5 + 11; const int B = 1e6 + 11; inline int read() { char c = getchar(); int x = 0, f = 1; for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1; for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48); return x * f; } int n, m, all, cnt; int d[A], w[A], a[A], la[A]; inline bool check(int x) { memset(la, 0, sizeof(la)); for(int i = 1; i <= n; i++) a[i] = d[i]; for(int i = 1; i <= x; i++) if(a[i]) a[la[a[i]]] = 0, la[a[i]] = i; int tl = 0, cnt = 0; for(int i = 1; i <= x; i++) { if(a[i]) { tl -= w[a[i]]; if(tl < 0) return 0; else cnt++; } else tl++; } return cnt == m; } int main() { freopen("generals.in", "r", stdin); freopen("generals.out", "w", stdout); n = read(), m = read(); if(n < m) return puts("-1"), 0; for(int i = 1; i <= n; i++) d[i] = read(); for(int i = 1; i <= m; i++) w[i] = read(), all += w[i]; if(all > n) return puts("-1"), 0; int l = 0, r = n, ans = -1; while(l <= r) { int mid = (l + r) >> 1; if(check(mid)) ans = mid, r = mid - 1; else l = mid + 1; } return cout << ans << '\n', 0; } */
\(20\)分:string
暴搜,只能從左往右搜,因此記錄一下上次用的是哪個,此次枚舉直接從上次用的下一個開始枚舉,保證從左往右it
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define int long long using namespace std; const int A = 1e5 + 11; const int B = 1e6 + 11; const int mod = 1e9 + 7; inline int read() { char c = getchar(); int x = 0, f = 1; for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1; for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48); return x * f; } int n, m, ans, vis[A], a[A]; char s[A]; int c[4000][4000]; void dfs(int cnt, int last) { if(cnt > n + 1) return; if((cnt - 1) % 2 == 0 && cnt - 1 != 0) { int now = cnt - 1; int zuo = 0, you = 0, cao = 0; for(int i = 1; i <= now / 2; i++) { if(a[i] == 2) { cao = 1; break; } if(a[i] == 1) zuo++; } for(int i = now / 2 + 1; i <= now; i++) { if(a[i] == 1) { cao = 1; break; } if(a[i] == 2) you++; } if(!cao && zuo == you && zuo + you == now) ans++; } for(int i = last + 1; i <= n; i++) { if(!vis[i]) { vis[i] = 1; a[cnt] = (s[i] == '(' ? 1: 2); dfs(cnt + 1, i); vis[i] = 0; } } } signed main() { freopen("beauty.in", "r", stdin); freopen("beauty.out", "w", stdout); scanf("%s", s + 1); n = strlen(s + 1); if(n <= 20) { dfs(1, 0); cout << ans % mod << '\n'; return 0; } return 0; }
\(50\)分:io
考慮每一個左括號,不包括他的,左邊有多少個左括號,右邊有多少個右括號,就能夠得出,對於每個左括號的位置,都有:(\(x\)是指左邊不包括這個左括號有多少個左括號,\(y\)是右邊有多少個右括號)
\[\sum_{i = 0}^{x} C(x, i) * C(y, i + 1)\]
而後就有\(50\)了
\(100\)分:
考慮直接換一種想法,咱們枚舉包括這個位置的左括號的,左邊有多少個左括號,右邊有多少個右括號,這個位置必須選,那麼就能得出
\[\sum_{i = 1}^{x} C(x, i) * C(y, i)\]
可是這樣就會把不選這個位置的狀況算上,因此還要減去
\[\sum_{i = 1}^{x} C(x - 1, i) * C(y, i)\]
就得出了
\[\sum_{i = 1}^{x} C(x, i) * C(y, i) - \sum_{i = 1}^{x} C(x - 1, i) * C(y, i) \]
有一個輔助式子
\[\sum_{i = 0}^{x} C(x, i) * C(y, i) = C(x + y, x)\]
因此上面的式子就能寫成
\[(C(x + y, x) - 1 )- ( C(x + y - 1, x - 1) - 1)\]
就等於
\[C(x + y, x) - C(x + y - 1, x - 1) \]
對於每一個左括號的位置,咱們都這樣計算一遍,而後就作完了
時間複雜度\(O(n)\)
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define int long long using namespace std; const int A = 5e5 + 11; const int B = 1e6 + 11; const int mod = 1e9 + 7; inline int read() { char c = getchar(); int x = 0, f = 1; for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1; for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48); return x * f; } int n, m, a[A], b[A], fac[A], inv[A], ans; //a[i]左邊的左括號個數,b[i]右邊的右括號個數 char s[A]; int power(int a, int b, int res = 1) { while(b) { if(b & 1) res = res * a % mod; a = a * a % mod; b >>= 1; } return res; } void prepare(int n) { fac[0] = 1; for(int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % mod; inv[n] = power(fac[n], mod - 2); for(int i = n - 1; i >= 0; i--) inv[i] = inv[i + 1] * (i + 1) % mod; return; } int C(int n, int m) { if(n < m) return 0; return fac[n] % mod * inv[n - m] % mod * inv[m] % mod; } signed main() { scanf("%s", s + 1); n = strlen(s + 1); prepare(n * 2); for(int i = n; i >= 1; i--) if(s[i] == ')') b[i] = b[i + 1] + 1; else b[i] = b[i + 1]; for(int i = 1; i <= n; i++) { if(s[i] == '(') a[i] = a[i - 1] + 1; else a[i] = a[i - 1]; } for(int i = 1; i <= n; i++) { if(s[i] == ')') continue; int x = a[i], y = b[i]; ans += C(x + y, x) - C(x + y - 1, x - 1) , ans %= mod; } ans = (ans % mod + mod) % mod; cout << ans << '\n'; return 0; }
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<queue> #include<vector> using namespace std; //var int n,m; //Trie struct Tree { int ch[26]; int fail; } T[400010]; int tot; int pos[400010];//index->node void insert(char* st,int num) { int now=0,len=strlen(st); for(int i=0; i<len; i++) { if(!T[now].ch[st[i]-'a']) T[now].ch[st[i]-'a']=++tot; now=T[now].ch[st[i]-'a']; } pos[num]=now; return ; } //fail-tree vector<int>son[400010]; //AC Automaton queue<int>q; void bfs() { for(int i=0; i<26; i++) if(T[0].ch[i]) { q.push(T[0].ch[i]); T[T[0].ch[i]].fail=0; } while(!q.empty()) { int u=q.front(); q.pop(); son[T[u].fail].push_back(u); for(int i=0; i<26; i++) if(T[u].ch[i]) { T[T[u].ch[i]].fail=T[T[u].fail].ch[i]; q.push(T[u].ch[i]); } else T[u].ch[i]=T[T[u].fail].ch[i]; } return ; } //get dfn int dfn[400010],to[400010],now; //vector<char>Vec; void dfs(int u) { dfn[u]=++now; for(int i=0; i<son[u].size(); i++) dfs(son[u][i]); to[u]=now; return ; } /* //for debug void _dfs(int u) { printf("%d: str=",u); for(int i=0;i<Vec.size();i++) printf("%c",Vec[i]); printf("\n"); for(int i=0;i<26;i++) if(T[u].ch[i]){ Vec.push_back(i+'a'); _dfs(T[u].ch[i]); Vec.pop_back(); } return ; }*/ //Fenwick int c[400010]; int lowbit(int x) { return x&(-x); } void add(int x,int y) { for(; x<=tot+1; x+=lowbit(x)) c[x]+=y; return ; } int query(int x) { int ans=0; for(; x; x-=lowbit(x)) ans+=c[x]; return ans; } //Song-Tree vector<pair<int,char> >S[400010]; //queries vector<int>qnum[400010]; //answers int ans[400010]; //REAL-DFS void DFS(int u,int state) { add(dfn[state],1); for(int i=0; i<qnum[u].size(); i++) { int v=qnum[u][i]; ans[v]=query(to[pos[v]])-query(dfn[pos[v]]-1); } for(int i=0; i<S[u].size(); i++) { int v=S[u][i].first; int C=S[u][i].second-'a'; DFS(v,T[state].ch[C]); } add(dfn[state],-1); return ; } char str[400010]; int main() { freopen("string.in","r",stdin); freopen("string.out","w",stdout); scanf("%d",&n); for(int i=1; i<=n; i++) { int op,fa; scanf("%d",&op); if(op==1)fa=0; else scanf("%d",&fa); scanf("%s",str); S[fa].push_back(make_pair(i,str[0])); } scanf("%d",&m); for(int i=1; i<=m; i++) { int u; scanf("%d",&u); scanf("%s",str); insert(str,i); qnum[u].push_back(i); } // _dfs(0); bfs(); dfs(0); DFS(0,0); // for(int i=1;i<=tot;i++) // printf("fail[%d]=%d\n",i,T[i].fail); for(int i=1; i<=m; i++) printf("%d\n",ans[i]); // for(int i=1;i<=m;i++) // printf("%d ",pos[i]); // printf("\n"); return 0; }