非均向性(anisotropy),或做各向異性,與各向同性相反,指物體的所有或部分物理、化學等性質隨方向的不一樣而有所變化的特性,例如石墨單晶的電導率在不一樣方向的差別可達數千倍,又如天文學上,宇宙微波背景輻射亦擁有些微的非均向性。許多的物理量都具備非均向性,如彈性模量、電導率、在酸中的溶解速度等。ios
各向異性擴散濾波主要是用來平滑圖像的,克服了高斯模糊的缺陷,各向異性擴散在平滑圖像時是保留圖像邊緣的,和雙邊濾波很像。spa
代碼實現:.net
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; float k = 15; float lambda = 0.25; int N = 20; void anisotropy_demo(Mat &image, Mat &result); int main(int argc, char** argv) { Mat src = imread("D:/vcprojects/images/example.png"); if (src.empty()) { printf("could not load image...\n"); return -1; } namedWindow("input image", CV_WINDOW_AUTOSIZE); imshow("input image", src); vector<Mat> mv; vector<Mat> results; split(src, mv); for (int n = 0; n < mv.size(); n++) { Mat m = Mat::zeros(src.size(), CV_32FC1); mv[n].convertTo(m, CV_32FC1); results.push_back(m); } int w = src.cols; int h = src.rows; Mat copy = Mat::zeros(src.size(), CV_32FC1); for (int i = 0; i < N; i++) { anisotropy_demo(results[0], copy); copy.copyTo(results[0]); anisotropy_demo(results[1], copy); copy.copyTo(results[1]); anisotropy_demo(results[2], copy); copy.copyTo(results[2]); } Mat output; normalize(results[0], results[0], 0, 255, NORM_MINMAX); normalize(results[1], results[1], 0, 255, NORM_MINMAX); normalize(results[2], results[2], 0, 255, NORM_MINMAX); results[0].convertTo(mv[0], CV_8UC1); results[1].convertTo(mv[1], CV_8UC1); results[2].convertTo(mv[2], CV_8UC1); Mat dst; merge(mv, dst); imshow("result", dst); imwrite("D:/result.png", dst); waitKey(0); return 0; } void anisotropy_demo(Mat &image, Mat &result) { int width = image.cols; int height = image.rows; // 四鄰域梯度 float n = 0, s = 0, e = 0, w = 0; // 四鄰域係數 float nc = 0, sc = 0, ec = 0, wc = 0; float k2 = k*k; for (int row = 1; row < height -1; row++) { for (int col = 1; col < width -1; col++) { // gradient n = image.at<float>(row - 1, col) - image.at<float>(row, col); s = image.at<float>(row + 1, col) - image.at<float>(row, col); e = image.at<float>(row, col - 1) - image.at<float>(row, col); w = image.at<float>(row, col + 1) - image.at<float>(row, col); nc = exp(-n*n / k2); sc = exp(-s*s / k2); ec = exp(-e*e / k2); wc = exp(-w*w / k2); result.at<float>(row, col) = image.at<float>(row, col) + lambda*(n*nc + s*sc + e*ec + w*wc); } } }
效果炸裂:
3d
參考:https://blog.csdn.net/jia20003/article/details/78415384code