對於Ajax加載的網頁已經分析了好幾次,這回來講說利用selenium自動化獲取網頁信息。html
一般對於異步加載的網頁,咱們須要查找網頁的真正請求,而且去構造請求參數,最後才能獲得真正的請求網址。而利用selenium經過模擬瀏覽器操做,則無需去考慮那麼多,作到可見便可爬。web
固然帶來便捷的同時,也有着不利,好比說時間上會有所增長,效率下降。但是對於業餘爬蟲而言,更快的爬取,並非那麼的重要。mongodb
首先在電腦的PyCharm上安裝selenium,而後下載與電腦上谷歌瀏覽器相對應版本的ChromeDriver。因爲個人Mac系統版本較新,須要先關閉Rootless內核保護機制,纔可以安裝,因此也是折騰一番後才成功安裝。數據庫
針對京東商城筆記本的網頁進行分析,這回只要在網頁源碼上分析,就能夠獲取筆記本價格、標題、評論數、商家名稱、商家性質。瀏覽器
爬取代碼以下:echarts
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.ui import WebDriverWait
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.by import By
from selenium import webdriver
from bs4 import BeautifulSoup
import pymongo
import time
# 鏈接數據庫
client = pymongo.MongoClient(host='localhost', port=27017)
db = client.JD_products
collection = db.products
# 啓動瀏覽器
browser = webdriver.Chrome()
wait = WebDriverWait(browser, 50)
def to_mongodb(data):
# 存儲數據信息
try:
collection.insert(data)
print("Insert The Data Successfully")
except:
print('Insert The Data Failed')
def search():
browser.get('https://www.jd.com/')
try:
# 查找搜索框及搜索按鈕,輸入信息並點擊按鈕
input = wait.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, "#key")))
submit = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR, "#search > div > div.form > button")))
input[0].send_keys('筆記本')
submit.click()
# 查找筆記本按鈕及銷量按鈕,依次點擊按鈕
button_1 = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR, "#J_selector > div:nth-child(2) > div > div.sl-value > div.sl-v-list > ul > li:nth-child(1) > a")))
button_1.click()
button_2 = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR, "#J_filter > div.f-line.top > div.f-sort > a:nth-child(2)")))
button_2.click()
# 獲取總頁數
page = wait.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '#J_bottomPage > span.p-skip > em:nth-child(1) > b')))
return page[0].text
except TimeoutException:
search()
def next_page(page_number):
try:
# 滑動到網頁底部,加載出全部商品信息
browser.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(10)
html = browser.page_source
parse_html(html)
# 當網頁到達100頁時,下一頁按鈕失效,因此選擇結束程序
while page_number == 101:
exit()
# 查找下一頁按鈕,並點擊按鈕
button = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR, '#J_bottomPage > span.p-num > a.pn-next > em')))
button.click()
wait.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, "#J_goodsList > ul > li:nth-child(60)")))
# 判斷翻頁成功
wait.until(EC.text_to_be_present_in_element((By.CSS_SELECTOR, "#J_bottomPage > span.p-num > a.curr"), str(page_number)))
except TimeoutException:
return next_page(page_number)
def parse_html(html):
"""
解析商品列表網頁
"""
data = {}
soup = BeautifulSoup(html, 'html.parser')
goods_info = soup.select('.gl-item')
# 查看當前頁商品數量,瞭解是否還有未加載的商品
quantity = 'item: ' + str(len(goods_info))
print(quantity)
for info in goods_info:
# 獲取商品標題信息
title = info.select('.p-name.p-name-type-2 a em')[0].text.strip()
title = title.replace('愛心東東', '')
print("title: ", title)
data['_id'] = title
# 獲取商品價格信息
price = info.select('.p-price i')[0].text.strip()
price = int(float(price))
print("price: ", price)
data['price'] = price
# 獲取商品的評論數量
commit = info.select('.p-commit strong')[0].text.strip()
commit = commit.replace('條評價', '')
if '萬' in commit:
commit = commit.split("萬")
commit = int(float(commit[0]) * 10000)
else:
commit = int(float(commit.replace('+', '')))
print("commit: ", commit)
data['commit'] = commit
# 獲取商品的商店名稱
shop_name = info.select('.p-shop a')
if (len(shop_name)) == 1:
print("shop_name: ", shop_name[0].text.strip())
data['shop_name'] = shop_name[0].text.strip()
else:
print("shop_name: ", '京東')
data['shop_name'] = '京東'
# 獲取商品的商店屬性
shop_property = info.select('.p-icons i')
if (len(shop_property)) >= 1:
message = shop_property[0].text.strip()
if message == '自營':
print("shop_property: ", message)
data['shop_property'] = message
else:
print("shop_property: ", '非自營')
data['shop_property'] = '非自營'
else:
print("shop_property: ", '非自營')
data['shop_property'] = '非自營'
to_mongodb(data)
print(data)
print("\n\n")
def main():
total = int(search())
print(total)
for i in range(2, total+2):
time.sleep(20)
print("第", i-1, "頁:")
next_page(i)
if __name__ == "__main__":
main()
less
雖然一開始就是以筆記本這個關鍵詞去搜索,可是這裏仍是須要再點擊一次筆記本按鈕,這是由於直接搜索筆記本會出現日常上課作筆記的那種筆記本,致使會獲取無用信息。因此利用京東自身更加詳細的歸類,獲得咱們想要的信息。dom
其中每個網頁有60條商品數據,那麼按道理應該有6000條的筆記本商品信息,可是最後卻只獲取了5992條。異步
估計兩個緣由:ide
1⃣️在MongoDB中商品的標題爲主鍵,商品標題出現重複
2⃣️網頁未能加載完全部的商品信息
最後成功獲取商品信息
讀取MongoDB中數據進行可視化分析
from pyecharts import Bar
import pandas as pd
import numpy as np
import pymongo
client = pymongo.MongoClient('localhost', 27017)
db = client.JD_products
table = db.products
df = pd.DataFrame(list(table.find()))
shop_message = df[df.shop_property == '自營'].groupby(['shop_name'])
shop_com = shop_message['shop_name'].agg(['count'])
shop_com.reset_index(inplace=True)
shop_com_last = shop_com.sort_values('count', ascending=False)[:12]
attr = np.array(shop_com_last['shop_name'])
v1 = np.array(shop_com_last['count'])
attr = ["{}".format(i.replace('京東', '').replace('旗艦店', '').replace('自營', '').replace('官方', '').replace('京東', '').replace('電腦', '').replace('產品專營店', '').replace('工做站', '').replace('筆記本', '')) for i in attr]
v1 = ["{}".format(i) for i in v1]
bar = Bar("京東自營商店筆記本種類排行", title_pos='center', title_top='18', width=800, height=400)
bar.add("商家", attr, v1, is_convert=True, xaxis_min=10, yaxis_label_textsize=12, is_yaxis_boundarygap=True, yaxis_interval=0, is_label_show=True, is_legend_show=False, label_pos='right', is_yaxis_inverse=True, is_splitline_show=False)
bar.render("京東自營商店筆記本種類排行.html")
從上面能夠看出,ThinkPad位居榜首,也與後面的詞雲圖有所呼應。商務、辦公,由於它就是一款以商務辦公爲主打品牌的筆記本。此外國內品牌聯想、華碩、宏碁、華爲也在榜上,支持國貨!!!
from pyecharts import Bar
import pandas as pd
import pymongo
client = pymongo.MongoClient('localhost', 27017)
db = client.JD_products
table = db.products
df = pd.DataFrame(list(table.find()))
price_info = df['price']
bins = [0, 2000, 2500, 3000, 3500, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 12000, 14000, 16000, 19000, 200000]
level = ['0-2000', '2000-2500', '2500-3000', '3000-3500', '3500-4000', '4000-5000', '5000-6000', '6000-7000', '7000-8000', '8000-9000', '9000-10000', '10000-12000', '12000-14000', '14000-16000', '16000-19000', '19000以上']
price_stage = pd.cut(price_info, bins=bins, labels=level).value_counts().sort_index()
attr = price_stage.index
v1 = price_stage.values
bar = Bar('筆記本價格分佈柱狀圖', title_pos='center', title_top='10', width=800, height=400)
bar.add('', attr, v1, is_stack=True, xaxis_rotate=30, yaxis_min=0, xaxis_interval=0, is_splitline_show=False, is_label_show=True)
bar.render('筆記本價格分佈柱狀圖.html')
筆記本價格區間在4000-6000有較大的集中,也必定程度反應出了如今筆記本的中間價位,記得剛上大學那會,價格在5000+的筆記本就能有着不錯的配置,LOL特效全開。
from pyecharts import Pie
import pandas as pd
import pymongo
client = pymongo.MongoClient('localhost', 27017)
db = client.JD_products
table = db.products
df = pd.DataFrame(list(table.find()))
shop_message = df.groupby(['shop_property'])
shop_com = shop_message['shop_property'].agg(['count'])
shop_com.reset_index(inplace=True)
shop_com_last = shop_com.sort_values('count', ascending=False)
attr = shop_com_last['shop_property']
v1 = shop_com_last['count']
pie = Pie('商店性質', title_pos='center', width=800, height=400)
pie.add('', attr, v1, radius=[40, 75], label_text_color=None, is_label_show=True, legend_orient='vertical', legend_pos='left')
pie.render('商店性質.html')
統計下來自營與非自營,仍是小巫見大巫。京東和淘寶最大的區別就是京東有自營產品,送貨也快。雖然說自營的也有假貨,可是仍是小几率事件。購買電子產品時,好比手機、電腦等,對於我這種小白而言,我第一選擇就是去官網或者京東自營店購買,我是絕對不會去電子城和姦商們鬥智鬥勇的,即便可能價格會低點。可是官網通常快遞比較慢,須要個3-5天,而京東可能只需1-2天,因此京東算是我購買的最優選擇。
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import pandas as pd
import pymongo
import jieba
import re
client = pymongo.MongoClient('localhost', 27017)
db = client.JD_products
table = db.products
data = pd.DataFrame(list(table.find()))
data = data[['_id']]
text = ''
for line in data['_id']:
r = '[a-zA-Z0-9’!"#$%&\'()*+,-./:;<=>?@,。?★、…【】《》?「」‘’![\\]^_`{|}~]+'
line = re.sub(r, '', line.replace('筆記本電腦', '').replace('英寸', ''))
text += ' '.join(jieba.cut(line, cut_all=False))
backgroud_Image = plt.imread('computer.jpeg')
wc = WordCloud(
background_color='white',
mask=backgroud_Image,
font_path='msyh.ttf',
max_words=2000,
stopwords=STOPWORDS,
max_font_size=130,
random_state=30
)
wc.generate_from_text(text)
img_colors = ImageColorGenerator(backgroud_Image)
wc.recolor(color_func=img_colors)
plt.imshow(wc)
plt.axis('off')
wc.to_file("computer.jpg")
print("生成詞雲成功")
這裏把標題中筆記本配置參數所有用正則篩選掉。雖然說筆記本參數決定了筆記本的性能,不過真正的去購買一臺筆記本時,最重要的仍是根據本身的需求和預算,而後再去考慮筆記本參數,最後選擇一部適合本身的筆記本。通常的筆記本參數以下:
CPU:酷睿系列i三、i五、i7,標壓M與低壓U
硬盤:500G、1T、2T
顯卡:AMD,NVIDIA
內存:4G,8G
··· END ···