package com.zetyun.streaming.flink;import org.apache.flink.api.common.functions.MapFunction;import org.apache.flink.api.java.tuple.Tuple;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.api.java.tuple.Tuple3;import org.apache.flink.api.java.utils.ParameterTool;import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.ObjectMapper;import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.node.ObjectNode;import org.apache.flink.streaming.api.TimeCharacteristic;import org.apache.flink.streaming.api.datastream.KeyedStream;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;import org.apache.flink.streaming.api.functions.windowing.WindowFunction;import org.apache.flink.streaming.api.watermark.Watermark;import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.api.windowing.windows.TimeWindow;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;import org.apache.flink.streaming.util.serialization.JSONDeserializationSchema;import org.apache.flink.util.Collector;import javax.annotation.Nullable;import java.text.ParseException;import java.text.SimpleDateFormat;import java.util.Date;import java.util.Iterator;import java.util.Properties;/** * Created by jyt on 2018/4/10. * 基於帳號計算每30秒 金額的平均值 */public class EventTimeAverage { public static void main(String[] args) throws Exception { final ParameterTool parameterTool = ParameterTool.fromArgs(args); String topic = parameterTool.get("topic", "accountId-avg"); Properties properties = parameterTool.getProperties(); properties.setProperty("bootstrap.servers", "192.168.44.101:9092"); final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); ObjectMapper objectMapper = new ObjectMapper(); SingleOutputStreamOperator<ObjectNode> source = env.addSource(new FlinkKafkaConsumer010( topic, new JSONDeserializationSchema(), properties)); //設置WaterMarks方式一 /*SingleOutputStreamOperator<ObjectNode> objectNodeOperator = source.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<ObjectNode>(Time.seconds(15)) { @Override public long extractTimestamp(ObjectNode element) { SimpleDateFormat format = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss"); Date eventTime = null; try { eventTime = format.parse(element.get("eventTime").asText()); } catch (ParseException e) { e.printStackTrace(); } return eventTime.getTime(); } });*/ //設置WaterMarks方式二 SingleOutputStreamOperator<ObjectNode> objectNodeOperator = source.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<ObjectNode>() { public long currentMaxTimestamp = 0L; public static final long maxOutOfOrderness = 10000L;//最大容許的亂序時間是10s Watermark a = null; SimpleDateFormat format = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss"); @Nullable @Override public Watermark getCurrentWatermark() { a = new Watermark(currentMaxTimestamp - maxOutOfOrderness); return a; } @Override public long extractTimestamp(ObjectNode jsonNodes, long l) { String time = jsonNodes.get("eventTime").asText(); long timestamp = 0; try { timestamp = format.parse(time).getTime(); } catch (ParseException e) { e.printStackTrace(); } currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp); return timestamp; } }); KeyedStream<Tuple3<String, Double, String>, Tuple> keyBy = objectNodeOperator.map(new MapFunction<ObjectNode, Tuple3<String, Double, String>>() { @Override public Tuple3<String, Double, String> map(ObjectNode jsonNodes) throws Exception { System.out.println(jsonNodes.get("accountId").asText() + "==map====" + jsonNodes.get("amount").asDouble() + "===map===" + jsonNodes.get("eventTime").asText()); return new Tuple3<String, Double, String>(jsonNodes.get("accountId").asText(), jsonNodes.get("amount").asDouble(), jsonNodes.get("eventTime").asText()); } }).keyBy(0); SingleOutputStreamOperator<Object> apply = keyBy.window(TumblingEventTimeWindows.of(Time.seconds(30))).apply(new WindowFunction<Tuple3<String,Double,String>, Object, Tuple, TimeWindow>() { @Override public void apply(Tuple tuple, TimeWindow timeWindow, Iterable<Tuple3<String, Double, String>> iterable, Collector<Object> collector) throws Exception { Iterator<Tuple3<String, Double, String>> iterator = iterable.iterator(); int count =0; double num = 0.0; ///Tuple2<String, Double> result = null; Tuple3<String, Double, String> next = null; String accountId = null ; while (iterator.hasNext()) { next = iterator.next(); System.out.println(next); accountId=next.f0; num += next.f1; count++; } if (next != null) { collector.collect(new Tuple2<String, Double>(accountId,num/count)); } } }); apply.print(); //apply.addSink(new FlinkKafkaProducer010<String>("192.168.44.101:9092","wiki-result",new SimpleStringSchema())); env.execute("AverageDemo"); }}