本文是Sharding-JDBC採用Spring Boot Starter方式配置第二篇,第一篇是讀寫分離講解,請參考:《Spring Boot中整合Sharding-JDBC讀寫分離示例》java
在我《Spring Cloud微服務-全棧技術與案例解析》書中都是經過XML方式配置。今天給你們演示的是單庫中分表的操做,若是用XML方式配置,那麼就是下面的配置:node
<!-- 數據源 --> <bean id="ds_0" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" primary="true"> <property name="driverClassName" value="com.mysql.jdbc.Driver" /> <property name="url" value="jdbc:mysql://localhost:3306/ds_0?characterEncoding=utf-8" /> <property name="username" value="root" /> <property name="password" value="123456" /> </bean> <!-- algorithm-class="com.fangjia.sharding.UserSingleKeyTableShardingAlgorithm" --> <!-- user_0,user_1,user_2,user_3 --> <rdb:strategy id="userTableStrategy" sharding-columns="id" algorithm-expression="user_${id.longValue() % 4}"/> <rdb:data-source id="dataSource"> <rdb:sharding-rule data-sources="ds_0"> <rdb:table-rules> <rdb:table-rule logic-table="user" actual-tables="user_${0..3}" table-strategy="userTableStrategy"/> </rdb:table-rules> <rdb:default-database-strategy sharding-columns="none" algorithm-class="com.dangdang.ddframe.rdb.sharding.api.strategy.database.NoneDatabaseShardingAlgorithm"/> </rdb:sharding-rule> </rdb:data-source>
咱們將user表分紅了4個,分別是user_0,user_1,user_2,user_3,經過id取模的方式決定數據落在哪張表上面。mysql
若是用Spring Boot方式配置天然就簡單多了,以下:git
sharding.jdbc.datasource.names=ds_master # 數據源 sharding.jdbc.datasource.ds_master.type=com.alibaba.druid.pool.DruidDataSource sharding.jdbc.datasource.ds_master.driver-class-name=com.mysql.jdbc.Driver sharding.jdbc.datasource.ds_master.url=jdbc:mysql://localhost:3306/ds_0?characterEncoding=utf-8 sharding.jdbc.datasource.ds_master.username=root sharding.jdbc.datasource.ds_master.password=123456 # 分表配置 sharding.jdbc.config.sharding.tables.user.actual-data-nodes=ds_master.user_${0..3} sharding.jdbc.config.sharding.tables.user.table-strategy.inline.sharding-column=id sharding.jdbc.config.sharding.tables.user.table-strategy.inline.algorithm-expression=user_${id.longValue() % 4}
在1.x版本中,單分片算法是經過實現SingleKeyTableShardingAlgorithm,示例代碼以下:github
import java.util.Collection; import java.util.LinkedHashSet; import com.dangdang.ddframe.rdb.sharding.api.ShardingValue; import com.dangdang.ddframe.rdb.sharding.api.strategy.table.SingleKeyTableShardingAlgorithm; import com.google.common.collect.Range; public class UserSingleKeyTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<Long> { public String doEqualSharding(Collection<String> availableTargetNames, ShardingValue<Long> shardingValue) { for (String each : availableTargetNames) { System.out.println(each+"\t"+shardingValue.getValue()+"\t"+shardingValue.getValue() % 4 ); if (each.endsWith(shardingValue.getValue() % 4 + "")) { return each; } } throw new IllegalArgumentException(); } public Collection<String> doInSharding(Collection<String> availableTargetNames, ShardingValue<Long> shardingValue) { Collection<String> result = new LinkedHashSet<>(availableTargetNames.size()); for (Long value : shardingValue.getValues()) { for (String tableName : availableTargetNames) { if (tableName.endsWith(value % 4 + "")) { result.add(tableName); } } } return result; } public Collection<String> doBetweenSharding(Collection<String> availableTargetNames, ShardingValue<Long> shardingValue) { Collection<String> result = new LinkedHashSet<>(availableTargetNames.size()); Range<Long> range = (Range<Long>) shardingValue.getValueRange(); for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) { for (String each : availableTargetNames) { if (each.endsWith(i % 4 + "")) { result.add(each); } } } return result; } }
咱們這邊引入的Spring Boot Starter包是2.x的版本,在這個版本中,分片算法的接口有調整,咱們須要用到標準分片策略StandardShardingStrategy。提供對SQL語句中的=, IN和BETWEEN AND的分片操做支持。StandardShardingStrategy只支持單分片鍵,提供PreciseShardingAlgorithm和RangeShardingAlgorithm兩個分片算法。PreciseShardingAlgorithm是必選的,用於處理=和IN的分片。RangeShardingAlgorithm是可選的,用於處理BETWEEN AND分片,若是不配置RangeShardingAlgorithm,SQL中的BETWEEN AND將按照全庫路由處理。算法
自定義一個單分片算法spring
import java.util.Collection; import io.shardingjdbc.core.api.algorithm.sharding.PreciseShardingValue; import io.shardingjdbc.core.api.algorithm.sharding.standard.PreciseShardingAlgorithm; /** * 自定義分片算法 * * @author yinjihuan * */ public class MyPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Long> { @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) { for (String tableName : availableTargetNames) { if (tableName.endsWith(shardingValue.getValue() % 4 + "")) { return tableName; } } throw new IllegalArgumentException(); } }
使用須要修改咱們以前的配置sql
sharding.jdbc.config.sharding.tables.user.actual-data-nodes=ds_master.user_${0..3} sharding.jdbc.config.sharding.tables.user.table-strategy.standard.sharding-column=id sharding.jdbc.config.sharding.tables.user.table-strategy.standard.precise-algorithm-class-name=com.fangjia.sharding.MyPreciseShardingAlgorithm
源碼參考:
https://github.com/yinjihuan/...數據庫
參考代碼中測試的代碼也寫好了,在Controller中,啓動後經過調用接口的方式測試數據的添加和查詢。express
另外Sharding-Sphere 3.0.0.M3也發佈了,新版本看點:
1.XA分佈式事務
2.數據庫治理模塊加強
3.API部分調整
4.修復M2Bug
項目地址:
https://github.com/sharding-s...
https://gitee.com/sharding-sp...
一個這麼優秀的框架,這麼靠譜的研發團隊,你們趕忙學起來呀!