D - Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh pathsios
思路:c++
樹上啓發式合併spa
從根節點出發到每一個位置的每一個字符的奇偶性記爲每一個位置的狀態,每次統計一下每一個狀態的最大深度debug
爲了保證鏈通過當前節點u,咱們先計算每一個子樹的答案,再更新子樹狀態對深度的貢獻。code
代碼:blog
#pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include<bits/stdc++.h> using namespace std; #define y1 y11 #define fi first #define se second #define pi acos(-1.0) #define LL long long #define ls rt<<1, l, m #define rs rt<<1|1, m+1, r //#define mp make_pair #define pb push_back #define ULL unsigned LL #define pll pair<LL, LL> #define pli pair<LL, int> #define pii pair<int, int> #define piii pair<pii, int> #define pdi pair<double, int> #define pdd pair<double, double> #define mem(a, b) memset(a, b, sizeof(a)) #define debug(x) cerr << #x << " = " << x << "\n"; #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); //head inline int read() { int a = 1, b = 0; char ch = getchar(); while(ch < '0' || ch > '9') { if(ch == '-') a = -1; ch = getchar(); } while('0' <= ch && ch <= '9') { b = b*10 + ch-'0'; ch = getchar(); } return a*b; } const int N = 5e5 + 5, M = 5e6 + 5; const int INF = 1e8; vector<pii> g[N]; int n, p, dp[N], sz[N], son[N], deep[N], st[N], mx[M]; char c[2]; void get_son(int u, int o) { sz[u] = 1; deep[u] = deep[o] + 1; for (int i = 0; i < g[u].size(); ++i) { int v = g[u][i].fi; int w = g[u][i].se; st[v] = st[u] ^ (1<<w); get_son(v, u); if(sz[v] > sz[son[u]]) son[u] = v; sz[u] += sz[v]; } } void CAL(int p, int u) { if(mx[st[u]] >= 0) dp[p] = max(dp[p], mx[st[u]]+deep[u]-2*deep[p]); for (int i = 0; i < 22; ++i) { if(mx[st[u]^(1<<i)] >= 0) dp[p] = max(dp[p], mx[st[u]^(1<<i)]+ deep[u]-2*deep[p]); } for (int i = 0; i < g[u].size(); ++i) { int v = g[u][i].fi; CAL(p, v); } } void ADD(int u) { mx[st[u]] = max(mx[st[u]], deep[u]); for (int i = 0; i < g[u].size(); ++i) { int v = g[u][i].fi; ADD(v); } } void DELETE(int u) { if(mx[st[u]] >= 0) mx[st[u]] = -INF; for (int i = 0; i < g[u].size(); ++i) { int v = g[u][i].fi; DELETE(v); } } void dfs(int u) { for (int i = 0; i < g[u].size(); ++i) { int v = g[u][i].fi; if(v != son[u]) { dfs(v); DELETE(v); } } if(son[u]) dfs(son[u]); if(mx[st[u]] >= 0) dp[u] = mx[st[u]] - deep[u]; for (int i = 0; i < 22; ++i) { if(mx[st[u]^(1<<i)] >= 0) dp[u] = max(dp[u], mx[st[u]^(1<<i)] - deep[u]); } mx[st[u]] = max(mx[st[u]], deep[u]); for (int i = 0; i < g[u].size(); ++i) { int v = g[u][i].fi; if(v != son[u]) { CAL(u, v); ADD(v); } } for (int i = 0; i < g[u].size(); ++i) { int v = g[u][i].fi; dp[u] = max(dp[u], dp[v]); } } int main() { n = read(); for (int i = 2; i <= n; ++i) { p = read(); scanf("%s", c); g[p].pb({i, c[0]-'a'}); } get_son(1, 0); for (int i = 0; i < M; ++i) mx[i] = -INF; dfs(1); for (int i = 1; i <= n; ++i) printf("%d%c", dp[i], " \n"[i==n]); return 0; }