位運算小結

Details

Basics

At the heart of bit manipulation are the bit-wise operators & (and), | (or), ~ (not) and ^ (exclusive-or, xor) and shift operators a << b and a >> b.ios

There is no boolean operator counterpart to bitwise exclusive-or, but there is a simple explanation. The exclusive-or operation takes two inputs and returns a 1 if either one or the other of the inputs is a 1, but not if both are. That is, if both inputs are 1 or both inputs are 0, it returns 0. Bitwise exclusive-or, with the operator of a caret, ^, performs the exclusive-or operation on each pair of bits. Exclusive-or is commonly abbreviated XOR.git

  • Set union A | B
  • Set intersection A & B
  • Set subtraction A & ~B
  • Set negation ALL_BITS ^ A or ~A 【各位取反: ALL_BITS^A 或者 ~A】、【A的複數形式:~A+1】
  • Set bit A |= 1 << bit
  • Clear bit A &= ~(1 << bit)
  • Test bit (A & 1 << bit) != 0
  • Extract last bit A&-A or A&~(A-1) or x^(x&(x-1)) 【獲得最後一位:A&-AA&~(A-1)x^(x&(x-1))
  • Remove last bit A&(A-1) 【刪除最後一個1:A&(A-1)
  • Get all 1-bits ~0

Examples

n的二進制表示中1的個數app

1 int count_one(int n) {
2     while(n) {
3         n = n&(n-1); //刪除最後一個1
4         count++;
5     }
6     return count;
7 }

n是否是4的冪 return Integer.toString(n,4).matches("^10*$");less

1 bool isPowerOfFour(int n) {
2     return !(n&(n-1)) && (n&0x55555555);
3     //check the 1-bit location;
4 }

^ tricks

Use ^ to remove even exactly same numbers and save the odd, or save the distinct bits and remove the same.ide

Sum of Two Integers

對於二進制的加法運算,若不考慮進位,則1+1=0,1+0=1,0+1=1,0+0=0,經過對比異或,不難發現,此方法與異或運算相似。於是排出進位,加法可用異或來實現。而後考慮進位,0+0進位爲0,1+0進位爲0,0+1進位爲0,1+1進位爲1,該操做與位運算的&操做類似。函數

那麼加法運算能夠這樣實現:ui

1)先不考慮進位,按位計算各位累加(用異或實現),獲得值a;this

2)而後再考慮進位,並將進位的值左移,得值b,若b爲0,則a就是加法運算的結果,若b不爲0,則a+b即得結果(遞歸調用該函數)。spa

1 int getSum(int a, int b) {
2     return b==0? a:getSum(a^b, (a&b)<<1); //be careful about the terminating condition;
3 }
 1 public class Solution {
 2     public int getSum(int a, int b) {
 3         if(b == 0) { //不產生進位時,相加完畢
 4             return a;
 5         }
 6         int c = a ^ b; //按位相加,不進位
 7         int d = (a & b) << 1; //按位相加後產生的進位
 8         return getSum(c, d);
 9     }
10 }
另:
  1. 不用乘除法、for、while、if、else、switch、case等關鍵字及條件判斷語句(A?B:C),求1+2+3+···+n的值。
  2. 不用加法就用上面的位運算。
1 public class Solution {
2      int sum = 0;  
3      public int getSum(int n) {
4            sum += n;  
5            boolean falg = (n >0) && (sum = getSum(--n) > 0 );
6            return sum;
7      }          
8 }

 

Missing Number

Given an array containing n distinct numbers taken from 0, 1, 2, ..., n, find the one that is missing from the array. For example, Given nums = [0, 1, 3] return 2. (Of course, you can do this by math.)code

1 int missingNumber(vector<int>& nums) {
2     int ret = 0;
3     for(int i = 0; i < nums.size(); ++i) {
4         ret ^= i;
5         ret ^= nums[i];
6     }
7     return ret^=nums.size();
8 }

| tricks

Keep as many 1-bits as possible

Find the largest power of 2 (most significant bit in binary form), which is less than or equal to the given number N.

1 long largest_power(long N) {
2     //changing all right side bits to 1.
3     N = N | (N>>1);
4     N = N | (N>>2);
5     N = N | (N>>4);
6     N = N | (N>>8);
7     N = N | (N>>16);
8     return (N+1)>>1;
9 }
Reverse Bits

Reverse bits of a given 32 bits unsigned integer.

Solution
 1 uint32_t reverseBits(uint32_t n) {
 2     unsigned int mask = 1<<31, res = 0;
 3     for(int i = 0; i < 32; ++i) {
 4         if(n & 1) res |= mask;
 5         mask >>= 1;
 6         n >>= 1;
 7     }
 8     return res;
 9 }
10 uint32_t reverseBits(uint32_t n) {
11     uint32_t mask = 1, ret = 0;
12     for(int i = 0; i < 32; ++i){
13         ret <<= 1;
14         if(mask & n) ret |= 1;
15         mask <<= 1;
16     }
17     return ret;
18 }

& tricks

Just selecting certain bits

Reversing the bits in integer

x = ((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1);
x = ((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2);
x = ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4);
x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
x = ((x & 0xffff0000) >> 16) | ((x & 0x0000ffff) << 16);
Bitwise AND of Numbers Range

Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers in this range, inclusive. For example, given the range [5, 7], you should return 4.

Solution
1 int rangeBitwiseAnd(int m, int n) {
2     int a = 0;
3     while(m != n) {
4         m >>= 1;
5         n >>= 1;
6         a++;
7     }
8     return m<<a; 
9 }
Number of 1 Bits

Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also known as the Hamming weight).

Solution
 1 int hammingWeight(uint32_t n) {
 2     int count = 0;
 3     while(n) {
 4         n = n&(n-1);
 5         count++;
 6     }
 7     return count;
 8 }
 9 int hammingWeight(uint32_t n) {
10     ulong mask = 1;
11     int count = 0;
12     for(int i = 0; i < 32; ++i){ //31 will not do, delicate;
13         if(mask & n) count++;
14         mask <<= 1;
15     }
16     return count;
17 }

Application

Repeated DNA Sequences

All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify repeated sequences within the DNA. Write a function to find all the 10-letter-long sequences (substrings) that occur more than once in a DNA molecule.
For example,
Given s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT",
Return: ["AAAAACCCCC", "CCCCCAAAAA"].

Solution
 1 class Solution {
 2 public:
 3     vector<string> findRepeatedDnaSequences(string s) {
 4         int sLen = s.length();
 5         vector<string> v;
 6         if(sLen < 11) return v;
 7         char keyMap[1<<21]{0};
 8         int hashKey = 0;
 9         for(int i = 0; i < 9; ++i) hashKey = (hashKey<<2) | (s[i]-'A'+1)%5;
10         for(int i = 9; i < sLen; ++i) {
11             if(keyMap[hashKey = ((hashKey<<2)|(s[i]-'A'+1)%5)&0xfffff]++ == 1)
12                 v.push_back(s.substr(i-9, 10));
13         }
14         return v;
15     }
16 };

But the above solution can be invalid when repeated sequence appears too many times, in which case we should use unordered_map<int, int> keyMap to replace char keyMap[1<<21]{0}here.

Majority Element

Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times. (bit-counting as a usual way, but here we actually also can adopt sorting and Moore Voting Algorithm)

Solution
 1 int majorityElement(vector<int>& nums) {
 2     int len = sizeof(int)*8, size = nums.size();
 3     int count = 0, mask = 1, ret = 0;
 4     for(int i = 0; i < len; ++i) {
 5         count = 0;
 6         for(int j = 0; j < size; ++j)
 7             if(mask & nums[j]) count++;
 8         if(count > size/2) ret |= mask;
 9         mask <<= 1;
10     }
11     return ret;
12 }
Single Number III

Given an array of integers, every element appears three times except for one. Find that single one. (Still this type can be solved by bit-counting easily.) But we are going to solve it by digital logic design

Solution
 1 //inspired by logical circuit design and boolean algebra;
 2 //counter - unit of 3;
 3 //current   incoming  next
 4 //a b            c    a b
 5 //0 0            0    0 0
 6 //0 1            0    0 1
 7 //1 0            0    1 0
 8 //0 0            1    0 1
 9 //0 1            1    1 0
10 //1 0            1    0 0
11 //a = a&~b&~c + ~a&b&c;
12 //b = ~a&b&~c + ~a&~b&c;
13 //return a|b since the single number can appear once or twice;
14 int singleNumber(vector<int>& nums) {
15     int t = 0, a = 0, b = 0;
16     for(int i = 0; i < nums.size(); ++i) {
17         t = (a&~b&~nums[i]) | (~a&b&nums[i]);
18         b = (~a&b&~nums[i]) | (~a&~b&nums[i]);
19         a = t;
20     }
21     return a | b;
22 }
23 ;
Maximum Product of Word Lengths

Given a string array words, find the maximum value of length(word[i]) * length(word[j]) where the two words do not share common letters. You may assume that each word will contain only lower case letters. If no such two words exist, return 0.

Example 1:
Given ["abcw", "baz", "foo", "bar", "xtfn", "abcdef"]
Return 16
The two words can be "abcw", "xtfn".

 

Example 2:
Given ["a", "ab", "abc", "d", "cd", "bcd", "abcd"]
Return 4
The two words can be "ab", "cd".

 

Example 3:
Given ["a", "aa", "aaa", "aaaa"]
Return 0
No such pair of words.

 

Solution

Since we are going to use the length of the word very frequently and we are to compare the letters of two words checking whether they have some letters in common:

  • using an array of int to pre-store the length of each word reducing the frequently measuring process;
  • since int has 4 bytes, a 32-bit type, and there are only 26 different letters, so we can just use one bit to indicate the existence of the letter in a word.
 1 int maxProduct(vector<string>& words) {
 2     vector<int> mask(words.size());
 3     vector<int> lens(words.size());
 4     for(int i = 0; i < words.size(); ++i) lens[i] = words[i].length();
 5     int result = 0;
 6     for (int i=0; i<words.size(); ++i) {
 7         for (char c : words[i])
 8             mask[i] |= 1 << (c - 'a');
 9         for (int j=0; j<i; ++j)
10             if (!(mask[i] & mask[j]))
11                 result = max(result, lens[i]*lens[j]);
12     }
13     return result;
14 }

Attention

  • result after shifting left(or right) too much is undefined
  • right shifting operations on negative values are undefined
  • right operand in shifting should be non-negative, otherwise the result is undefined
  • The & and | operators have lower precedence than comparison operators

Sets

All the subsets
A big advantage of bit manipulation is that it is trivial to iterate over all the subsets of an N-element set: every N-bit value represents some subset. Even better, if A is a subset of B then the number representing A is less than that representing B, which is convenient for some dynamic programming solutions.

It is also possible to iterate over all the subsets of a particular subset (represented by a bit pattern), provided that you don’t mind visiting them in reverse order (if this is problematic, put them in a list as they’re generated, then walk the list backwards). The trick is similar to that for finding the lowest bit in a number. If we subtract 1 from a subset, then the lowest set element is cleared, and every lower element is set. However, we only want to set those lower elements that are in the superset. So the iteration step is just i = (i - 1) & superset.

 1 vector<vector<int>> subsets(vector<int>& nums) {
 2     vector<vector<int>> vv;
 3     int size = nums.size(); 
 4     if(size == 0) return vv;
 5     int num = 1 << size;
 6     vv.resize(num);
 7     for(int i = 0; i < num; ++i) {
 8         for(int j = 0; j < size; ++j)
 9             if((1<<j) & i) vv[i].push_back(nums[j]);   
10     }
11     return vv;
12 }

Actually there are two more methods to handle this using recursion and iteration respectively.

Bitset

bitset stores bits (elements with only two possible values: 0 or 1, true or false, ...).
The class emulates an array of bool elements, but optimized for space allocation: generally, each element occupies only one bit (which, on most systems, is eight times less than the smallest elemental type: char).

 1 // bitset::count
 2 #include <iostream>       // std::cout
 3 #include <string>         // std::string
 4 #include <bitset>         // std::bitset
 5 
 6 int main () {
 7   std::bitset<8> foo (std::string("10110011"));
 8   std::cout << foo << " has ";
 9   std::cout << foo.count() << " ones and ";
10   std::cout << (foo.size()-foo.count()) << " zeros.\n";
11   return 0;
12 }

 

來源:https://leetcode.com/problems/sum-of-two-integers/#/solutions

相關文章
相關標籤/搜索