點擊上方藍色字體關注公衆號git
這周兩篇文章:算法
1 機器學習是萬能的嗎?AI落地有哪些先決條件?若是你剛接觸ML,或者對ML以爲很神祕,請先看下這篇文章。微信
2 如何作才能真正提高計算速度?硬件再牛,也難以招架業務場景中產生的數據,提升算法性能和計算速度是永遠的話題。app
最近有人問有沒有相關數據集,這幾天抽時間整理了如下數據集,標題便是Kaggle競賽題目,能夠直接搜索得到賽題詳細介紹,在此列出10個參賽隊伍最多的競賽題及標籤,最重要的是提供數據集的下載。
機器學習
Kaggle是提高理解ML的較好平臺,學的再多,都不如如今開始動手實踐,簡歷上寫的會再多算法,都不若有1個競賽TOP3有說服力。
性能
1 Titanic: Machine Learning from Disaster學習
Start here!
Predict survival on the Titanic and get familiar with ML basics字體
2 House Prices-Advanced Regression Techniquesspa
Predict sales prices
practice feature engineering, RFs, and gradient boosting.net
3 Digit Recognizer
CV starts here!
Learn computer vision fundamentals with the famous MNIST data
4 TalkingData AdTracking Fraud Detection Challenge
fraudulent click starts here!
Can you detect fraudulent click traffic for mobile app ads?
5 Toxic Comment Classification Challenge
NLP starts here!
Identify and classify toxic online comments
6 Santander Customer Satisfaction
HOT
Which customers are happy customers?
7 2018 Data Science Bowl
CV
Find the nuclei in divergent images to advance medical discovery
8 Bike Sharing Demand
Forecasting
Forecast use of a city bikeshare system
9 Instacart Market Basket Analysis
選品分析
Which products will an Instacart consumer purchase again?
10 San Francisco Crime Classification
多分類預測
Predict the category of crimes that occurred in the city by the bay
後臺回覆:kaggledata 直接下載。若不反感,能否點下廣告!
本文分享自微信公衆號 - Python與算法社區(alg-channel)。
若有侵權,請聯繫 support@oschina.cn 刪除。
本文參與「OSC源創計劃」,歡迎正在閱讀的你也加入,一塊兒分享。