做者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/html
更多內容,請看:MATLAB: Clustering Algorithms, MATLAB聚類有效性評價指標(外部)post
前提:數據的真實標籤已知!TP:真陽性,FP:假陽性,FN:假陰性,TN:真陰性lua
function result = Evaluate(real_label,pre_label) % This fucntion evaluates the performance of a classification model by % calculating the common performance measures: Accuracy, Sensitivity, % Specificity, Precision, Recall, F-Measure, G-mean. % Input: ACTUAL = Column matrix with actual class labels of the training % examples % PREDICTED = Column matrix with predicted class labels by the % classification model % Output: EVAL = Row matrix with all the performance measures % https://www.mathworks.com/matlabcentral/fileexchange/37758-performance-measures-for-classification idx = (real_label()==1); p = length(real_label(idx)); n = length(real_label(~idx)); N = p+n; tp = sum(real_label(idx)==pre_label(idx)); tn = sum(real_label(~idx)==pre_label(~idx)); fp = n-tn; fn = p-tp; tp_rate = tp/p; tn_rate = tn/n; accuracy = (tp+tn)/N; %準確度 sensitivity = tp_rate; %敏感性:真陽性率 specificity = tn_rate; %特異性:真陰性率 precision = tp/(tp+fp); %精度 recall = sensitivity; %召回率 f_measure = 2*((precision*recall)/(precision + recall)); %F-measure gmean = sqrt(tp_rate*tn_rate); Jaccard=tp/(tp+fn+fp); %Jaccard係數 result = [accuracy sensitivity specificity precision recall f_measure gmean Jaccard]; fprintf('accuracy=%.4f, sensitivity=%.4f, specificity=%.4f, precision=%.4f, recall=%.4f, f_measure=%.4f, gmean=%.4f, Jaccard=%.4f\n', ... accuracy, sensitivity, specificity, precision, recall, f_measure, gmean, Jaccard);
>> A = [1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3]; >> B = [1 2 1 1 1 1 1 2 2 2 2 3 1 1 3 3 3]; >> result = Evaluate(A,B) accuracy=0.7059, sensitivity=0.8333, specificity=0.6364, precision=0.5556, recall=0.8333, f_measure=0.6667, gmean=0.7282, Jaccard=0.5000 result = 0.705882352941177 0.833333333333333 0.636363636363636 0.555555555555556 0.833333333333333 0.666666666666667 0.728219081254419 0.500000000000000
[1] MATLAB聚類有效性評價指標(外部)url
[2] 類似性度量spa