在python
中能夠經過寫類生成數據庫對應的表結構, 生成對象來爲表加入數據, 這就是orm
框架的本質思想. 其中sqlalchemy
就是實現這種框架的一個python
模塊 java
使用sqlalchemy
對單表進行操做 : python
#!/usr/bin/env python
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Index, UniqueConstraint
from sqlalchemy.orm import sessionmaker
# 傳入數據庫名, 用戶名, 密碼以及ip, 創建鏈接數據庫的引擎engine(負責與數據庫驅動程序進行交互), 加入echo=True則會打印建立過程
engine = create_engine("mysql+pymysql://root:@127.0.0.1:3306/blog_db?charset=utf8")
# 經過繼承sqlalchemy生成的基類來創建與數據庫表對應的類(一個類在數據庫中表現爲一張表)
Base = declarative_base()
# 自定義類, 本質就是設置表中字段格式
class User(Base):
# 設置表名, 固定格式
__tablename__ = "users"
# 默認就是自增加, 不加autoincrement=True參數也可
id = Column(Integer, primary_key=True, autoincrement=True)
# 建立name字段的同時建立普通索引, 該字段不能爲空, String類型對應數據庫中的varchar字段
name = Column(String(32), nullable=True, index=True)
pwd = Column(String(16))
address = Column(String(16))
# 建立聯合索引
__table_args__ = (
UniqueConstraint(name, pwd, name="n_unique_p"),
)
# 根據已有的全部類來建立對應的表
Base.metadata.create_all(engine)
# 根據引擎創建mysql與程序之間的會話
MySession = sessionmaker(engine)
session = MySession()
# 設置插入的一條數據
u1 = User(name="test-01", pwd="111")
# 插入數據並提交
session.add(u1)
session.commit()
# 插入多條數據
session.add_all([
User(name="test-02", pwd="222"),
User(name="test-03", pwd="333")
])
session.commit()
# 查詢指定表的第一條數據
# 根據要查詢的表對應的類生成sql語句Query對象
sql_obj = session.query(User)
print(type(sql_obj), sql_obj)
# 執行查詢結果, 返回的是查詢的表對應的對象
result_first = sql_obj.first()
print("result_first ---> \n", result_first.name)
# 加入過濾條件查詢, filter中只能加入條件, filter_by只能及誒如鍵值對過濾, 返回表對象
result_filter = sql_obj.filter(User.name == "test-02").first()
print("result_filter --->\n", result_filter.name)
# 得到全部查詢結果, 返回的是列表, 即便只有一個對象也不例外
result_all = sql_obj.all()
print("result_all --->\n", result_all)
for obj in result_all:
print(obj.id, obj.name)
# 將查詢結果排序顯示
result_order = sql_obj.order_by(User.id)
print("result_order --->\n", result_order)
for obj in result_order:
print(obj.id, obj.name)
# 統計查詢個數
result_num = sql_obj.count()
print("result_num --->\n", result_num)
print(result_num)
# 取反查詢
result_oth = sql_obj.filter(~User.name == "test-02").all()
print("result_oth --->\n", result_oth)
for obj in result_oth:
print(obj.id, obj.name)
# 與或查詢
from sqlalchemy import or_
result_or = sql_obj.filter(or_(User.id == 1, User.id == 2)).all()
print("result_or --->\n", result_or)
for obj in result_or:
print(obj.id, obj.name)
# 刪除指定條件的數據
session.query(User).filter(User.id > 2).delete()
session.commit()
# 修改指定條件的數據
session.query(User).filter(User.id == 1).update({"name": "test-up"})
session.commit()
# 關閉會話
session.close()複製代碼
使用sqlalchemy
關於一對多類型的表的操做: mysql
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Index, UniqueConstraint, ForeignKey
from sqlalchemy.orm import sessionmaker, relationship
engine = create_engine("mysql+pymysql://root:@127.0.0.1:3306/blog_db?charset=utf8")
Base = declarative_base()
class Father(Base):
__tablename__ = "father"
id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(String(16), nullable=True)
class Son(Base):
__tablename__ = "son"
id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(String(20))
# 建立外鍵
son_id_father = Column(Integer, ForeignKey("father.id"))
# 設置Son與Father之間的雙向關係, 第一個參數爲類名, backref表示反向的名稱爲son_name
father_name = relationship("Father", backref="son_name")
# Base.metadata.create_all(engine)
MySession = sessionmaker(engine)
session = MySession()
# 爲father設置數據
f1 = Father(name="peter")
f2 = Father(name="nick")
# 爲son設置數據
s1 = Son(name="peter-son-01")
s2 = Son(name="peter-son-02")
s3 = Son(name="peter-son-03")
s4 = Son(name="nickr-son-01")
# 利用relationship設置f1, f2的對應關係
f1.son_name = [s1, s2, s3]
f2.son_name = [s4]
session.add_all([f1, f2])
session.commit()
# 聯表查詢
sql_obj = session.query(Father.name.label("father_name"), Son.name.label("son_name")).join(Son)
print(sql_obj)
result = sql_obj.all()
for obj in result:
print(obj)
session.commit()複製代碼
使用sqlalchemy關於多對多類型的表的操做: sql
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Index, UniqueConstraint, ForeignKey
from sqlalchemy.orm import sessionmaker, relationship
engine = create_engine("mysql+pymysql://root:@127.0.0.1:3306/blog_db?charset=utf8")
Base = declarative_base()
class ManToBook(Base):
__tablename__ = "mantobook"
id = Column(Integer, primary_key=True, autoincrement=True)
book_id = Column(Integer, ForeignKey("book.id"))
man_id = Column(Integer, ForeignKey("man.id"))
class Book(Base):
__tablename__ = "book"
id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(String(16), nullable=True)
# 創建Book與Man之間雙向的關係, secondary表示根據ManToBook肯定其雙向的具體關係, backref表示反向的名稱爲book_name
man_name = relationship("Man", secondary=ManToBook.__table__, backref="book_name")
class Man(Base):
__tablename__ = "man"
id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(String(20))
Base.metadata.create_all(engine)
MySession = sessionmaker(engine)
session = MySession()
# 設置數據
b1 = Book(name="python")
b2 = Book(name="java")
b3 = Book(name="c#")
m1 = Man(name="lisa")
m2 = Man(name="peter")
m3 = Man(name="nick")
# 利用relationship設置對應關係
# python這本書同時有lisa, peter和nick在讀
b1.man_name = [m1, m2, m3]
# lisa 同時擁有python和java
m1.book_name = [b1, b2]
session.add_all([b1, m1])
session.commit()複製代碼