Spark ML調參

在機器學習中,如何根據給定的數據集,爲算法模型擬合參數,使得模型達到最優的效果,這一過程稱爲「調參」(tuning)。
Spark的Mllib提供了CrossValidatorTrainValidationSplit兩種方法,來幫助實現模型的調優。
通常使用上述的兩種方法須要進行以下設置,html

  1. setEstimator方法指定須要調參的算法algorithm或是工做流Pipeline(Pipeline也是一種Estimator);
  2. setEstimatorParamMaps方法指定「參數網格」(使用new ParamGridBuilder().addGrid(xxx,xxx).build()),做爲備選的參數組合;
  3. setEvaluator指定評價方法,用來衡量訓練好的模型在驗證集上的表現。

交叉驗證CrossValidator

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder}
import org.apache.spark.sql.Row

// Prepare training data from a list of (id, text, label) tuples.
val training = spark.createDataFrame(Seq(
  (0L, "a b c d e spark", 1.0),
  (1L, "b d", 0.0),
  (2L, "spark f g h", 1.0),
  (3L, "hadoop mapreduce", 0.0),
  (4L, "b spark who", 1.0),
  (5L, "g d a y", 0.0),
  (6L, "spark fly", 1.0),
  (7L, "was mapreduce", 0.0),
  (8L, "e spark program", 1.0),
  (9L, "a e c l", 0.0),
  (10L, "spark compile", 1.0),
  (11L, "hadoop software", 0.0)
)).toDF("id", "text", "label")

// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
val tokenizer = new Tokenizer()
  .setInputCol("text")
  .setOutputCol("words")
val hashingTF = new HashingTF()
  .setInputCol(tokenizer.getOutputCol)
  .setOutputCol("features")
val lr = new LogisticRegression()
  .setMaxIter(10)
val pipeline = new Pipeline()
  .setStages(Array(tokenizer, hashingTF, lr))

// We use a ParamGridBuilder to construct a grid of parameters to search over.
// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
val paramGrid = new ParamGridBuilder()
  .addGrid(hashingTF.numFeatures, Array(10, 100, 1000))
  .addGrid(lr.regParam, Array(0.1, 0.01))
  .build()

// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
// This will allow us to jointly choose parameters for all Pipeline stages.
// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
// is areaUnderROC.
val cv = new CrossValidator()
  .setEstimator(pipeline)
  .setEvaluator(new BinaryClassificationEvaluator)
  .setEstimatorParamMaps(paramGrid)
  .setNumFolds(2)  // Use 3+ in practice

// Run cross-validation, and choose the best set of parameters.
val cvModel = cv.fit(training)

// Prepare test documents, which are unlabeled (id, text) tuples.
val test = spark.createDataFrame(Seq(
  (4L, "spark i j k"),
  (5L, "l m n"),
  (6L, "mapreduce spark"),
  (7L, "apache hadoop")
)).toDF("id", "text")

// Make predictions on test documents. cvModel uses the best model found (lrModel).
cvModel.transform(test)
  .select("id", "text", "probability", "prediction")
  .collect()
  .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
    println(s"($id, $text) --> prob=$prob, prediction=$prediction")
  }

輸出算法

(4, spark i j k) --> prob=[0.12566260711357374,0.8743373928864263], prediction=1.0
(5, l m n) --> prob=[0.995215441016286,0.004784558983714038], prediction=0.0
(6, mapreduce spark) --> prob=[0.3069689523262643,0.6930310476737357], prediction=1.0
(7, apache hadoop) --> prob=[0.8040279442401395,0.1959720557598605], prediction=0.0

prob中的兩個數值分別表示預測結果爲0或1的機率,默認的閾值爲0.5。CrossValidator會對每一種參數組合評估屢次,計算成本會比較高,所以不適合規模比較大的數據集。sql

TrainValidationSplit

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.{BinaryClassificationEvaluator, RegressionEvaluator}
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}
import org.apache.spark.sql.{Row, SparkSession}

// Prepare training and test data.
val data = spark.createDataFrame(Seq(
  (0L, "a b c d e spark", 1.0),
  (1L, "b d", 0.0),
  (2L, "spark f g h", 1.0),
  (3L, "hadoop mapreduce", 0.0),
  (4L, "b spark who", 1.0),
  (5L, "g d a y", 0.0),
  (6L, "spark fly", 1.0),
  (7L, "was mapreduce", 0.0),
  (8L, "e spark program", 1.0),
  (9L, "a e c l", 0.0),
  (10L, "spark compile", 1.0),
  (11L, "hadoop software", 0.0)
)).toDF("id", "text", "label")

// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
val tokenizer = new Tokenizer()
  .setInputCol("text")
  .setOutputCol("words")
val hashingTF = new HashingTF()
  .setInputCol(tokenizer.getOutputCol)
  .setOutputCol("features")
val lr = new LogisticRegression()
  .setMaxIter(10)
val pipeline = new Pipeline()
  .setStages(Array(tokenizer, hashingTF, lr))

// We use a ParamGridBuilder to construct a grid of parameters to search over.
// TrainValidationSplit will try all combinations of values and determine best model using
// the evaluator.
val paramGrid = new ParamGridBuilder()
  .addGrid(lr.regParam, Array(0.1, 0.01))
  .addGrid(lr.fitIntercept)
  .addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0))
  .build()

// In this case the estimator is a Pipeline
// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
val trainValidationSplit = new TrainValidationSplit()
  .setEstimator(pipeline)
  .setEvaluator(new BinaryClassificationEvaluator)
  .setEstimatorParamMaps(paramGrid)
  // 80% of the data will be used for training and the remaining 20% for validation.
  .setTrainRatio(0.8)

// Run train validation split, and choose the best set of parameters.
val model = trainValidationSplit.fit(data)

val test = spark.createDataFrame(Seq(
  (4L, "spark i j k"),
  (5L, "l m n"),
  (6L, "mapreduce spark"),
  (7L, "apache hadoop")
)).toDF("id", "text")

// Make predictions on test data. model is the model with combination of parameters
// that performed best.
model.transform(test)
  .select("id", "text", "probability", "prediction")
  .collect()
  .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
    println(s"($id, $text) --> prob=$prob, prediction=$prediction")
  }

輸出apache

(4, spark i j k) --> prob=[0.26612878920913,0.73387121079087], prediction=1.0
(5, l m n) --> prob=[0.9209302389399868,0.0790697610600131], prediction=0.0
(6, mapreduce spark) --> prob=[0.4429343598469927,0.5570656401530073], prediction=1.0
(7, apache hadoop) --> prob=[0.8583692828862762,0.14163071711372377], prediction=0.0

TrainValidationSplit將輸入數據按照setTrainRatio()的參數切分爲訓練集和驗證集,根據模型在驗證集上的表現,找出全部的參數組合中表現最好的一組,做爲模型的最優參數。相較於CrossValidator對每一種參數組合都會評估屢次,TrainValidationSplit只需對每一種參數組合評估一次,所以計算成本更低。可是當數據集的規模不是很大時,可能會由於數據分佈的不均勻,影響模型選擇的結果。數組

參考

  1. http://spark.apache.org/docs/...
相關文章
相關標籤/搜索