(整理)用Elixir作一個多人撲克遊戲 1

原文git

學習一門新的語言或框架,最好的方法就是作一些小項目。Elixir和Phoenix很適合用來作撲克應用。github

洗牌

咱們要作的是德州撲克,首先,須要牌組:框架

defmodule Poker.Deck do
  defmodule Card do
    defstruct [:rank, :suit]
  end

  def new do
    for rank <- ranks, suit <- suits do 
      %Card{rank: rank, suit: suit}
    end |> Enum.shuffle
  end

  defp ranks, do: Enum.to_list(2..14)
  defp suits, do: [:spades, :clubs, :hearts, :diamonds]
end

咱們定義了一個可以給出一套洗好了的52張牌的new函數。for結構很是適合作這種數值與花色的組合。dom

有趣的模式匹配

defmodule Poker.Ranking do
  def evaluate(cards) do
    cards |> Enum.map(&to_tuple/1) |> Enum.sort |> eval
  end

  defp to_tuple(
    %Poker.Deck.Card{rank: rank, suit: suit}
  ), do: {rank, suit}

  defp eval(
    [{10, s}, {11, s}, {12, s}, {13, s}, {14, s}]
  ), do: :royal_flush
end

首先將5張手牌按牌面從小到大排序,再用模式匹配來肯定組合的類型。函數

defp eval(
    [{a, s}, {_b, s}, {_c, s}, {_d, s}, {e, s}]
  ) when e - a == 4, do: :straight_flush
  defp eval(
    [{2, s}, {3, s}, {4, s}, {5, s}, {14, s}]
  ), do: :straight_flush

同花色的牌面值不會重複,因此只須要讓首尾的差值爲4就能夠肯定是同花順。Ace能夠和2,3,4,5組合。學習

defp eval(
    [{a, _}, {a, _}, {a, _}, {a, _}, {b, _}]
  ), do: :four_of_a_kind
  defp eval(
    [{b, _}, {a, _}, {a, _}, {a, _}, {a, _}]
  ), do: :four_of_a_kind

  defp eval(
    [{a, _}, {a, _}, {a, _}, {b, _}, {b, _}]
  ), do: :full_house
  defp eval(
    [{b, _}, {b, _}, {a, _}, {a, _}, {a, _}]
  ), do: :full_house

這裏就不一一列出了,全部的組合能夠在github查看。fetch

誰是贏家

根據德州撲克的規則,除了五張公開牌(board),每人還有兩張手牌(hand),要從這七張牌中選出最大的組合。ui

def best_possible_hand(board, hand) do
    board ++ hand
      |> combinations(5)
      |> Stream.map(&{evaluate(&1), &1})
      |> Enum.max
  end

比較組合的大小,不只要看組合的類型,有時還要看牌面,好比6結尾的同花順比5結尾的大,三個5帶兩個7比三個5帶兩個6大。因此咱們將eval函數的返回值修改成一個2元素元組,第一個元素表明類型,第二個元素用於同類內的比較。lua

defp eval(
    [{10, s}, {11, s}, {12, s}, {13, s}, {14, s}]
  ), do: {10, nil} 

  defp eval(
    [{a, s}, {b, s}, {c, s}, {d, s}, {e, s}]
  ) when e - a == 4, do: {9, e}
  defp eval(
    [{2, s}, {3, s}, {4, s}, {5, s}, {14, s}]
  ), do: {9, 5}

  defp eval(
    [{a, _}, {a, _}, {a, _}, {a, _}, {b, _}]
  ), do: {8, {a,b}}
  defp eval(
    [{b, _}, {a, _}, {a, _}, {a, _}, {a, _}]
  ), do: {8, {a,b}}

  defp eval(
    [{a, _}, {a, _}, {a, _}, {b, _}, {b, _}]
  ), do: {7, {a,b}}
  defp eval(
    [{b, _}, {b, _}, {a, _}, {a, _}, {a, _}]
  ), do: {7, {a,b}}

注意,咱們給皇家同花順的返回值是{10,nil} 而不是{10},由於{10}是小於{9,1}的(元組比較大小首先看元素數量)。spa

玩家,牌桌與手牌

遊戲流程能夠用這張圖來表示:

流程

player經過向table發送消息,來進入下一步。

hand階段

在hand階段,玩家能夠下注(bet)或棄牌(fold)。咱們能夠用GenServer的特性來實現它:

defmodule Poker.Hand do
  use GenServer

  def start_link(players, config \\ [])

  def start_link(players, config) when length(players) > 1 do
    GenServer.start_link(__MODULE__, [players, config])
  end

  def start_link(_players, _opts), do: {:error, :not_enough_players}

  def bet(hand, amount) do
    GenServer.call(hand, {:bet, amount})
  end

  def check(hand) do
    GenServer.call(hand, {:bet, 0})
  end

  def fold(hand) do
    GenServer.call(hand, :fold)
  end
end

注意,config能夠用於附帶一些額外限制,好比最大下注金額,在這裏默認是 []。咱們調用GenServer.call函數,來向hand發送下注或棄牌消息。

回調

首先咱們須要一個初始狀態:

def init([players, config]) do
  <<a::size(32), b::size(32), c::size(32)>> = :crypto.rand_bytes(12)
  :random.seed({a, b, c})

  {small_blind_amount, big_blind_amount} = get_blinds(config)
  [small_blind_player, big_blind_player|remaining_players] = players

  to_act =
    Enum.map(remaining_players, &{&1, big_blind_amount}) ++
    [
      {small_blind_player, big_blind_amount - small_blind_amount},
      {big_blind_player, 0}
    ]

  {hands, deck} = deal(Poker.Deck.new, players)

  state = %{
    phase: :pre_flop,
    players: players,
    pot: small_blind_amount + big_blind_amount,
    board: [],
    hands: hands,
    deck: deck,
    to_act: to_act
  }

  update_players(state)

  {:ok, state}
end

defp get_blinds(config) do
  big_blind   = Keyword.get(config, :big_blind, 10)
  small_blind = Keyword.get(config, :small_blind, div(big_blind, 2))
  {small_blind, big_blind}
end

由於Erlang在每一個進程中使用的隨機種子都是相同的,因此咱們要先使用:crypto.rand_bytes 來生成新的隨機種子。以後從config中獲取大盲注,小盲注。咱們用 {player, to_call} 的形式,來表示每一個玩家須要繼續下注的最小值。在第一輪中,有兩位玩家必先盲注,其餘全部玩家須要跟大盲注。

而後,咱們要開始發牌了:

defp deal(deck, players) do
  {hands, deck} = Enum.map_reduce players, deck, fn (player, [card_one,card_two|deck]) ->
    {{player, [card_one, card_two]}, deck}
  end

  {Enum.into(hands, %{}), deck}
end

Enum.map_reduce 函數一邊講每人抽的兩張牌映射到player中,一邊對deck進行reduce。以後將每一個player變爲映射,方便查找。

一切就緒以後,咱們要讓玩家們知道如今的情況:

defp update_players(state) do
  Enum.each state.players, fn (player) ->
    hand = Map.fetch! state.hands, player
    hand_state = %{
      hand: hand,
      active: player_active?(player, state),
      board: state.board,
      pot: state.pot
    }
    send player, {:hand_state, hand_state}
  end

  state
end

defp player_active?(p, %{to_act: [{p, _}|_]}), do: true
defp player_active?(_player, _state), do: false

咱們給每一個玩家發送了明牌,暗牌,是否輪到本身,以及桌上的籌碼總數。

觀察,下注,或加註

接下來咱們要實現的是handle_call/3 函數,使用GenServer的時候,每一個call函數都會傳遞給handle_call/3來解決。這裏有兩種錯誤提示:

def handle_call(
  {:bet, _}, {p_one, _}, state = %{to_act: [{p_two, _}|_]}
) when p_one != p_two do
  {:reply, {:error, :not_active}, state}
end

def handle_call(
  {:bet, amount}, _from, state = %{to_act: [{_, to_call}|_]}
) when amount < to_call do
  {:reply, {:error, :not_enough}, state}
end

第一種是尚未輪到的玩家發出了下注請求,第二種是下注的金額少於最低要求。
還有三種正確狀況:1, 一位玩家下注而後下注階段結束;2, 一位玩家下注而後其餘玩家行動;3,一位玩家加註而後其餘玩家必須迴應。

這裏是前兩種:

def handle_call(
  {:bet, amount}, _from, state = %{to_act: [{_, to_call}]}
) when amount == to_call do
  updated_state = update_in(state.pot, &(&1 + amount)) |>
    advance_phase |>
    update_players

  {:reply, :ok, updated_state}
end

def handle_call(
  {:bet, amount}, _from, state = %{to_act: [{_, to_call}|to_act]}
) when amount == to_call do
  updated_state = update_in(state.pot, &(&1 + amount)) |>
    put_in([:to_act], to_act) |>
    update_players

  {:reply, :ok, updated_state}
end

加註是這裏最複雜的代碼了,咱們須要爲全部玩家提升下注要求,並將以前下注過的玩家添加到行動列表的末尾:

def handle_call(
  {:bet, amount}, _from, 
  state = %{to_act: [{player, to_call}|remaining_actions]}
) when amount > to_call do
  raised_amount = amount - to_call

  previous_callers = state.players |>
    Stream.concat(state.players) |>
    Stream.drop_while(&(&1 != player)) |>
    Stream.drop(1 + length(remaining_actions)) |>
    Stream.take_while(&(&1 != player))

  to_act = Enum.map(remaining_actions, fn {player, to_call} ->
    {player, to_call + raised_amount}
  end) ++ Enum.map(previous_callers, fn player ->
    {player, raised_amount}
  end)

  updated_state = 
    %{state | to_act: to_act, pot: state.pot + amount} |>
    update_players

  {:reply, :ok, updated_state}
end

棄牌

棄牌階段就很簡單了,只須要將該玩家從玩家列表裏刪除便可。

def handle_call(
  :fold, {player, _}, state = %{to_act: [{player, _}]}
) do
  updated_state = state |>
    update_in([:players], &(List.delete(&1, player))) |> 
    advance_phase |> 
    update_players
  {:reply, :ok, updated_state}
end

def handle_call(
  :fold, {player, _}, state = %{to_act: [{player, _}|to_act]}
) do
  updated_state = state |>
    update_in([:players], &(List.delete(&1, player))) |> 
    put_in([:to_act], to_act) |>
    update_players

  {:reply, :ok, updated_state}
end

def handle_call(:fold, _from, state) do
  {:reply, {:error, :not_active}, state}
end

推動階段

推動階段 advance_phase 是指下注結束以後,規則很簡單。若是隻剩下一位玩家,那麼該玩家勝出;若是進入到翻牌 flop,轉牌 turn,河牌 river 階段,咱們就要往檯面 board 上發出合適數量的牌,並進行新一輪下注。

defp advance_phase(state = %{players: [winner]}) do
  declare_winner(winner, state)
end

defp advance_phase(state = %{phase: :pre_flop}) do
  advance_board(state, :flop, 3)
end

defp advance_phase(state = %{phase: :flop}) do
  advance_board(state, :turn, 1)
end

defp advance_phase(state = %{phase: :turn}) do
  advance_board(state, :river, 1)
end

defp advance_board(state, phase, num_cards) do
  to_act = Enum.map(state.players, &{&1, 0})

  {additional_cards, deck} = Enum.split(state.deck, num_cards)

  %{state |
    phase: phase,
    board: state.board ++ additional_cards,
    deck: deck,
    to_act: to_act
  }
end

在隨後的下注階段,每位玩家均可如下注,但不是強制的。結束以後咱們會更新狀態,並進入下一輪下注。河牌以後若是還剩下多於一位玩家,那麼就須要計算手牌來決出勝負。

defp advance_phase(state = %{phase: :river}) do
  ranked_players = [{winning_ranking,_}|_] =
    state.players |>
    Stream.map(fn player ->
      {ranking, _} = Poker.Ranking.best_possible_hand(state.board, state.hands[player])
      {ranking, player}
    end) |>
    Enum.sort

  ranked_players |>
    Stream.take_while(fn {ranking, _} ->
      ranking == winning_ranking
    end) |>
    Enum.map(&elem(&1, 1)) |>
    declare_winner(state)

  state
end

咱們須要對每位剩下的玩家的最佳牌組進行排序,若是出現並列,就要進行下一步比較。

相關文章
相關標籤/搜索