Hadoop CDH5 Spark部署

      Spark是一個基於內存計算的開源的集羣計算系統,目的是讓數據分析更加快速,Spark 是一種與 Hadoop 類似的開源集羣計算環境,可是二者之間還存在一些不一樣之處,這些有用的不一樣之處使 Spark 在某些工做負載方面表現得更加優越,換句話說,Spark 啓用了內存分佈數據集,除了可以提供交互式查詢外,它還能夠優化迭代工做負載。儘管建立 Spark 是爲了支持分佈式數據集上的迭代做業,可是實際上它是對 Hadoop 的補充,能夠在 Hadoop 文件系統中並行運行。
html

CDH5 Spark安裝 node

1    Spark的相關軟件包 python

spark-core: spark的核心軟件包
spark-worker: 管理spark-worker的腳本
spark-master: 管理spark-master的腳本
spark-python: Spark的python客戶端

2     Spark運行依賴的環境 shell

CDH5
JDK

3     安裝Spark apache

apt-get install spark-core spark-master spark-worker spark-python
4     配置運行Spark (Standalone Mode)

        1     Configuring Spark(/etc/spark/conf/spark-env.sh) 分佈式

SPARK_MASTER_IP, to bind the master to a different IP address or hostname
SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports
SPARK_WORKER_CORES, to set the number of cores to use on this machine
SPARK_WORKER_MEMORY, to set how much memory to use (for example 1000MB, 2GB)
SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT
SPARK_WORKER_INSTANCE, to set the number of worker processes per node
SPARK_WORKER_DIR, to set the working directory of worker processes

          2      Starting, Stopping, and Running Spark oop

service spark-master start
service spark-worker start

                    還有一個GUI界面在<master_host>:18080 優化

5 Running Spark Applications this

        1     Spark應用有三種運行模式: spa

                    Standalone mode:默認模式

                    YARN client mode:提交spark應用到YARN,spark驅動在spark客戶端進程上。

                        YARN cluster mode:提交spark應用到YARN,spark驅動運行在ApplicationMaster上。

          2     運行SparkPi在Standalone模式

source /etc/spark/conf/spark-env.sh
CLASSPATH=$CLASSPATH:/your/additional/classpath
$SPARK_HOME/bin/spark-class [<spark-config-options>]  \     
    org.apache.spark.examples.SparkPi  \  
    spark://$SPARK_MASTER_IP:$SPARK_MASTER_PORT 10
                    Spark運行參數設置:http://spark.apache.org/docs/0.9.0/configuration.html

           3     運行SparkPi在YARN Client模式

                        在YARN client和YARN cluster模式下, 你首先要上傳spark JAR包到你的HDFS上, 而後設置SPARK_JAR環境變量。
source /etc/spark/conf/spark-env.sh
hdfs dfs -mkdir -p /user/spark/share/lib
hdfs dfs -put $SPARK_HOME/assembly/lib/spark-assembly_*.jar  /user/spark/share/lib/spark-assembly.jar
SPARK_JAR=hdfs://<nn>:<port>/user/spark/share/lib/spark-assembly.jar


source /etc/spark/conf/spark-env.sh
SPARK_CLASSPATH=/your/additional/classpath
SPARK_JAR=hdfs://<nn>:<port>/user/spark/share/lib/spark-assembly.jar
$SPARK_HOME/bin/spark-class [<spark-config-options>]  \    
    org.apache.spark.examples.SparkPi yarn-client 10
        4     運行SparkPi在YARN Cluster模式

source /etc/spark/conf/spark-env.sh
SPARK_JAR=hdfs://<nn>:<port>/user/spark/share/lib/spark-assembly.jar
APP_JAR=$SPARK_HOME/examples/lib/spark-examples_<version>.jar
$SPARK_HOME/bin/spark-class org.apache.spark.deploy.yarn.Client \
      --jar $APP_JAR \
      --class org.apache.spark.examples.SparkPi \
      --args yarn-standalone \
      --args 10
相關文章
相關標籤/搜索