tfidf_CountVectorizer 與 TfidfTransformer 保存和測試

作nlp的時候,若是用到tf-idf,sklearn中用CountVectorizer與TfidfTransformer兩個類,下面對和兩個類進行講解測試

1、訓練以及測試

CountVectorizer與TfidfTransformer在處理訓練數據的時候都用fit_transform方法,在測試集用transform方法。fit包含訓練的意思,表示訓練好了去測試,若是在測試集中也用fit_transform,那顯然致使結果錯誤。

#變量:content_train 訓練集,content_test測試集
vectorizer = CountVectorizer()
tfidftransformer = TfidfTransformer()

#訓練 用fit_transform
count_train=vectorizer.fit_transform(content_train)
tfidf = tfidftransformer.fit_transform(count_train)

#測試
count_test=vectorizer.transform(content_test)
test_tfidf = tfidftransformer.transform(count_test)

測試集的if-idf
test_weight = test_tfidf.toarray()spa

2、tf-idf詞典的保存

咱們老是須要保存tf-idf的詞典,而後計算測試集的tfidf,這裏要注意sklearn中保存有兩種方法:pickle與joblib。咱們這裏用picklecode

train_content = segmentWord(X_train)
test_content = segmentWord(X_test)
# replace 必須加,保存訓練集的特徵 vectorizer = CountVectorizer(decode_error="replace")
tfidftransformer = TfidfTransformer()
# 注意在訓練的時候必須用vectorizer.fit_transform、tfidftransformer.fit_transform # 在預測的時候必須用vectorizer.transform、tfidftransformer.transform vec_train = vectorizer.fit_transform(train_content)
tfidf = tfidftransformer.fit_transform(vec_train)

# 保存通過fit的vectorizer 與 通過fit的tfidftransformer,預測時使用
feature_path = 'models/feature.pkl'
with open(feature_path, 'wb') as fw:
    pickle.dump(vectorizer.vocabulary_, fw)

tfidftransformer_path = 'models/tfidftransformer.pkl'
with open(tfidftransformer_path, 'wb') as fw:
    pickle.dump(tfidftransformer, fw)

注意:vectorizer 與tfidftransformer都要保存,並且只能 fit_transform 以後保存,表示vectorizer 與tfidftransformer已經用訓練集訓練好了。orm

3、tf-idf加載,測試新數據

# 加載特徵
feature_path = 'models/feature.pkl' loaded_vec = CountVectorizer(decode_error="replace", vocabulary=pickle.load(open(feature_path, "rb")))
# 加載TfidfTransformer tfidftransformer_path = 'models/tfidftransformer.pkl' tfidftransformer = pickle.load(open(tfidftransformer_path, "rb"))
#測試用transform,表示測試數據,爲list
test_tfidf = tfidftransformer.transform(loaded_vec.transform(test_content))
相關文章
相關標籤/搜索