We are going to use this Docker Images tensorflow/tensorflowdocker
After installation of Docker has completed.session
$ docker run -it -p 8888:8888 tensorflow/tensorflow
Going to your browser on http://localhost:8888/. This Docker Image will launch a jupyter.dom
Of course,You can without Docker and start your first TensorFlow Instance.Follow steps of this tutorialui
import tensorflow as tf import numpy as np
# fake x_datas x_data = np.random.rand(100).astype(np.float32) # fake y_datas and build the relation between x_data and y_data # y = x_data * K_value + shift_value y_data = x_data*0.5 + 1.5
# define a model (the relation between x_data and y_data) K_value = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) shift_value = tf.Variable(tf.zeros([1])) y = K_value*x_data + shift_value
loss = tf.reduce_mean(tf.square(y-y_data))
#we use the Gradient Descent optimization algorithm optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss)
# variables initializer init = tf.global_variables_initializer() # create a session sess = tf.Session() # run init sess.run(init) for step in range(201): # training controller sess.run(train) if step % 10 == 0: # print datas print(step, sess.run(K_value), sess.run(shift_value))
(0, array([ 0.64817411], dtype=float32), array([ 1.89406931], dtype=float32)) (10, array([ 0.47824922], dtype=float32), array([ 1.5111196], dtype=float32)) (20, array([ 0.4887996], dtype=float32), array([ 1.50572574], dtype=float32)) (30, array([ 0.49423242], dtype=float32), array([ 1.5029484], dtype=float32)) (40, array([ 0.49703008], dtype=float32), array([ 1.50151825], dtype=float32)) (50, array([ 0.49847072], dtype=float32), array([ 1.50078177], dtype=float32)) (60, array([ 0.49921253], dtype=float32), array([ 1.50040257], dtype=float32)) (70, array([ 0.49959451], dtype=float32), array([ 1.5002073], dtype=float32)) (80, array([ 0.49979115], dtype=float32), array([ 1.50010681], dtype=float32)) (90, array([ 0.49989241], dtype=float32), array([ 1.50005496], dtype=float32)) (100, array([ 0.4999446], dtype=float32), array([ 1.50002825], dtype=float32)) (110, array([ 0.49997142], dtype=float32), array([ 1.50001454], dtype=float32)) (120, array([ 0.49998531], dtype=float32), array([ 1.50000751], dtype=float32)) (130, array([ 0.49999243], dtype=float32), array([ 1.50000381], dtype=float32)) (140, array([ 0.49999613], dtype=float32), array([ 1.50000191], dtype=float32)) (150, array([ 0.49999797], dtype=float32), array([ 1.50000107], dtype=float32)) (160, array([ 0.49999899], dtype=float32), array([ 1.50000048], dtype=float32)) (170, array([ 0.49999946], dtype=float32), array([ 1.50000024], dtype=float32)) (180, array([ 0.49999961], dtype=float32), array([ 1.50000024], dtype=float32)) (190, array([ 0.49999961], dtype=float32), array([ 1.50000024], dtype=float32)) (200, array([ 0.49999961], dtype=float32), array([ 1.50000024], dtype=float32))
Finally,The training data K_value will close to 0.5 and shift_value will close to 1.5.this
# y = x_data * K_value + shift_value y_data = x_data*0.5 + 1.5