題意:ios
一棵二叉樹,每次詢問一條路徑上的路徑和,初始每一個點有一個權值1,詢問後權值變爲0。$n \leq 10^7,m\leq10^6$git
分析:優化
首先樹鏈剖分+線段樹可作,$O(mlog^2)$,複雜度太大。spa
而後並查集縮點,樹剖求lca,$O(n+mlogn)$。能夠被卡一個subtask。code
考慮咱們並查集的過程當中是不斷往上跳,跳到相等時結束,這個點多是lca,也可能不是,須要判斷一下,考慮優化這個判斷。blog
二叉樹的前序遍歷有一個性質:兩個點的lca在他們中間。因而按照這個性質就能夠$O(n+m)$了。string
代碼:it
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #include<cctype> #include<cmath> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #define Swap(l, r) l ^= r, r ^= l, l ^= r #define fore(i, u, v) for (int i = head[u], v = e[i].to; i; i = e[i].nxt, v = e[i].to) using namespace std; typedef long long LL; char buf[10000000], *p1 = buf, *p2 = buf; #define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,10000000,stdin),p1==p2)?EOF:*p1++) inline int read() { int x=0,f=1;char ch=nc();for(;!isdigit(ch);ch=nc())if(ch=='-')f=-1; for(;isdigit(ch);ch=nc())x=x*10+ch-'0';return x*f; } const int N = 10000005; int ls[N], rs[N], fa[N], pos[N], f[N], dep[N]; int Root, Index; inline void add_edge(int u,int v) { if (v == Root || u == 0) return ; if(!ls[u]) ls[u] = v; else rs[u] = v; } void dfs(int u) { if (!u) return ; dep[u] = dep[fa[u]] + 1; dfs(ls[u]); pos[u] = ++Index; dfs(rs[u]); } int find(int x) { return x == f[x] ? x : f[x] = find(f[x]); } int solve(int u,int v) { int ans = 0, l = pos[u], r = pos[v]; l > r ? Swap(l, r) : l; u = find(u), v = find(v); while (u != v) ans ++, dep[u] > dep[v] ? u = f[u] = find(fa[u]) : v = f[v] = find(fa[v]); if (pos[u] >= l && pos[u] <= r) ans ++, f[u] = find(fa[u]), u = find(u); return ans; } int main() { read();int opt = read(), n = read(), m = read(); Root = read(); for (int i = 1; i <= n; ++i) fa[i] = read(), add_edge(fa[i], i); dfs(Root); for (int i = 1; i <= n; ++i) f[i] = i; int lastans = 0, u, v; while (m --) { u = read(), v = read(); u = (u ^ (lastans * opt)) % n + 1, v = (v ^ (lastans * opt)) % n + 1; lastans = solve(u, v); printf("%d\n", lastans); } return 0; }