摘要: 本文介紹使用opencv和yolo完成視頻流目標檢測,代碼解釋詳細,附源碼,上手快。python
在上一節內容中,介紹瞭如何將YOLO應用於圖像目標檢測中,那麼在學會檢測單張圖像後,咱們也能夠利用YOLO算法實現視頻流中的目標檢測。算法
首先打開 yolo_video.py
文件並插入如下代碼:網絡
# import the necessary packages import numpy as np import argparse import imutils import time import cv2 import os # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--input", required=True, help="path to input video") ap.add_argument("-o", "--output", required=True, help="path to output video") ap.add_argument("-y", "--yolo", required=True, help="base path to YOLO directory") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections") ap.add_argument("-t", "--threshold", type=float, default=0.3, help="threshold when applyong non-maxima suppression") args = vars(ap.parse_args())
一樣,首先從導入相關數據包和命令行參數開始。與以前不一樣的是,此腳本沒有-- image
參數,取而代之的是量個視頻路徑:架構
-- input
:輸入視頻文件的路徑;-- output
:輸出視頻文件的路徑;視頻的輸入能夠是手機拍攝的短視頻或者是網上搜索到的視頻。另外,也能夠經過將多張照片合成爲一個短視頻也能夠。本博客使用的是在PyImageSearch上找到來自imutils的VideoStream
類的 示例。
下面的代碼與處理圖形時候相同:app
# load the COCO class labels our YOLO model was trained on labelsPath = os.path.sep.join([args["yolo"], "coco.names"]) LABELS = open(labelsPath).read().strip().split("\n") # initialize a list of colors to represent each possible class label np.random.seed(42) COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8") # derive the paths to the YOLO weights and model configuration weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"]) configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"]) # load our YOLO object detector trained on COCO dataset (80 classes) # and determine only the *output* layer names that we need from YOLO print("[INFO] loading YOLO from disk...") net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
在這裏,加載標籤並生成相應的顏色,而後加載YOLO模型並肯定輸出層名稱。
接下來,將處理一些特定於視頻的任務:dom
# initialize the video stream, pointer to output video file, and # frame dimensions vs = cv2.VideoCapture(args["input"]) writer = None (W, H) = (None, None) # try to determine the total number of frames in the video file try: prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() \ else cv2.CAP_PROP_FRAME_COUNT total = int(vs.get(prop)) print("[INFO] {} total frames in video".format(total)) # an error occurred while trying to determine the total # number of frames in the video file except: print("[INFO] could not determine # of frames in video") print("[INFO] no approx. completion time can be provided") total = -1
在上述代碼塊中:ide
writer
)和幀尺寸;total
),以便估計整個視頻的處理時間;以後逐個處理幀:函數
# loop over frames from the video file stream while True: # read the next frame from the file (grabbed, frame) = vs.read() # if the frame was not grabbed, then we have reached the end # of the stream if not grabbed: break # if the frame dimensions are empty, grab them if W is None or H is None: (H, W) = frame.shape[:2]
上述定義了一個 while
循環, 而後從第一幀開始進行處理,而且會檢查它是不是視頻的最後一幀。接下來,若是還沒有知道幀的尺寸,就會獲取一下對應的尺寸。
接下來,使用當前幀做爲輸入執行YOLO的前向傳遞 :oop
ect Detection with OpenCVPython # construct a blob from the input frame and then perform a forward # pass of the YOLO object detector, giving us our bounding boxes # and associated probabilities blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) start = time.time() layerOutputs = net.forward(ln) end = time.time() # initialize our lists of detected bounding boxes, confidences, # and class IDs, respectively boxes = [] confidences = [] classIDs = []
在這裏,構建一個 blob
並將其傳遞經過網絡,從而得到預測。而後繼續初始化以前在圖像目標檢測中使用過的三個列表: boxes
、 confidences
、classIDs
:學習
# loop over each of the layer outputs for output in layerOutputs: # loop over each of the detections for detection in output: # extract the class ID and confidence (i.e., probability) # of the current object detection scores = detection[5:] classID = np.argmax(scores) confidence = scores[classID] # filter out weak predictions by ensuring the detected # probability is greater than the minimum probability if confidence > args["confidence"]: # scale the bounding box coordinates back relative to # the size of the image, keeping in mind that YOLO # actually returns the center (x, y)-coordinates of # the bounding box followed by the boxes' width and # height box = detection[0:4] * np.array([W, H, W, H]) (centerX, centerY, width, height) = box.astype("int") # use the center (x, y)-coordinates to derive the top # and and left corner of the bounding box x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) # update our list of bounding box coordinates, # confidences, and class IDs boxes.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) classIDs.append(classID)
在上述代碼中,與圖像目標檢測相同的有:
classID
並過濾掉弱預測;接下來,將應用非最大值抑制:
# apply non-maxima suppression to suppress weak, overlapping # bounding boxes idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"], args["threshold"]) # ensure at least one detection exists if len(idxs) > 0: # loop over the indexes we are keeping for i in idxs.flatten(): # extract the bounding box coordinates (x, y) = (boxes[i][0], boxes[i][1]) (w, h) = (boxes[i][2], boxes[i][3]) # draw a bounding box rectangle and label on the frame color = [int(c) for c in COLORS[classIDs[i]]] cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i]) cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
一樣的,在上述代碼中與圖像目標檢測相同的有:
cv2.dnn.NMSBoxes
函數用於抑制弱的重疊邊界框,能夠在此處閱讀有關非最大值抑制的更多信息;idx
,並繪製相應的邊界框+標籤;最終的部分代碼以下:
# check if the video writer is None if writer is None: # initialize our video writer fourcc = cv2.VideoWriter_fourcc(*"MJPG") writer = cv2.VideoWriter(args["output"], fourcc, 30, (frame.shape[1], frame.shape[0]), True) # some information on processing single frame if total > 0: elap = (end - start) print("[INFO] single frame took {:.4f} seconds".format(elap)) print("[INFO] estimated total time to finish: {:.4f}".format( elap * total)) # write the output frame to disk writer.write(frame) # release the file pointers print("[INFO] cleaning up...") writer.release() vs.release()
總結一下:
writer
),通常在循環的第一次迭代被初始化;frame
)寫入輸出視頻文件;如今,打開一個終端並執行如下命令:
$ python yolo_video.py --input videos/car_chase_01.mp4 \ --output output/car_chase_01.avi --yolo yolo-coco [INFO] loading YOLO from disk... [INFO] 583 total frames in video [INFO] single frame took 0.3500 seconds [INFO] estimated total time to finish: 204.0238 [INFO] cleaning up...
圖6:YOLO應用於車禍視頻對象檢測
在視頻/ GIF中,你不只能夠看到被檢測到的車輛,還能夠檢測到人員以及交通訊號燈!
YOLO目標檢測器在該視頻中表現至關不錯。讓如今嘗試同一車追逐視頻中的不一樣視頻:
$ python yolo_video.py --input videos/car_chase_02.mp4 \ --output output/car_chase_02.avi --yolo yolo-coco [INFO] loading YOLO from disk... [INFO] 3132 total frames in video [INFO] single frame took 0.3455 seconds [INFO] estimated total time to finish: 1082.0806 [INFO] cleaning up...
圖7:在該視頻中,使用OpenCV和YOLO對象檢測來找到該嫌疑人,嫌疑人如今已經逃離汽車並正位於停車場
YOLO再一次可以檢測到行人!或者嫌疑人回到他們的車中並繼續追逐:
$ python yolo_video.py --input videos/car_chase_03.mp4 \ --output output/car_chase_03.avi --yolo yolo-coco [INFO] loading YOLO from disk... [INFO] 749 total frames in video [INFO] single frame took 0.3442 seconds [INFO] estimated total time to finish: 257.8418 [INFO] cleaning up...
圖8: YOLO是一種快速深度學習對象檢測器,可以在使用GPU的狀況下用於實時視頻
最後一個例子,讓咱們看看如何使用YOLO做爲構建流量計數器:
$ python yolo_video.py --input videos/overpass.mp4 \ --output output/overpass.avi --yolo yolo-coco [INFO] loading YOLO from disk... [INFO] 812 total frames in video [INFO] single frame took 0.3534 seconds [INFO] estimated total time to finish: 286.9583 [INFO] cleaning up...
圖9:立交橋交通視頻代表,YOLO和OpenCV可準確、快速地檢測汽車
下面彙總YOLO視頻對象檢測完整視頻:
YOLO目標檢測器的最大限制和缺點是:
限制的緣由是因爲YOLO算法其自己:
SxS
網格,其中網格中的每一個單元格僅預測單個對象;所以,若是你的數據集是由許多靠近在一塊兒的小對象組成時,那麼就不該該使用YOLO算法。就小物體而言,更快的R-CNN每每效果最好,可是其速度也最慢。在這裏也可使用SSD算法, SSD一般在速度和準確性方面也有很好的權衡。
值得注意的是,在本教程中,YOLO比SSD運行速度慢,大約慢一個數量級。所以,若是你正在使用預先訓練的深度學習對象檢測器供OpenCV使用,可能須要考慮使用SSD算法而不是YOLO算法。
所以,在針對給定問題選擇對象檢測器時,我傾向於使用如下準則:
圖10:在個人書「使用Python進行計算機視覺的深度學習」中,我介紹了多種對象檢測算法,包括faster R-CNN、SSD、RetinaNet。書中講述瞭如何建立對象檢測圖像數據集、訓練對象檢測器並進行預測。
在本教程中,使用的YOLO模型是在COCO數據集上預先訓練的.。可是,若是想在本身的數據集上訓練深度學習對象檢測器,該如何操做呢?
大致思路是本身標註數據集,按照darknet網站上的指示及網上博客本身更改相應的參數訓練便可。或者在個人書「 深度學習計算機視覺與Python」中,詳細講述瞭如何將faster R-CNN、SSD和RetinaNet應用於:
書中的全部目標檢測章節都包含對算法和代碼的詳細說明,確保你可以成功訓練本身的對象檢測器。在這裏能夠了解有關個人書的更多信息(並獲取免費的示例章節和目錄)。
在本教程中,咱們學習瞭如何使用Deep Learning、OpenCV和Python完成YOLO對象檢測。而後,咱們簡要討論了YOLO架構,並用Python實現:
在配備的3GHz Intel Xeon W處理器的機器上,YOLO的單次前向傳輸耗時約0.3秒; 可是,使用單次檢測器(SSD),檢測耗時只需0.03秒,速度提高了一個數量級。對於使用OpenCV和Python在CPU上進行基於實時深度學習的對象檢測,你可能須要考慮使用SSD算法。
若是你有興趣在本身的自定義數據集上訓練深度學習對象檢測器,請務必參閱寫的「使用Python進行計算機視覺深度學習」,其中提供了有關如何成功訓練本身的檢測器的詳細指南。或者參看本人以前的博客。