10分鐘學會使用YOLO及Opencv實現目標檢測(下)|附源碼

摘要: 本文介紹使用opencv和yolo完成視頻流目標檢測,代碼解釋詳細,附源碼,上手快。python

在上一節內容中,介紹瞭如何將YOLO應用於圖像目標檢測中,那麼在學會檢測單張圖像後,咱們也能夠利用YOLO算法實現視頻流中的目標檢測。算法

將YOLO應用於視頻流對象檢測

首先打開 yolo_video.py文件並插入如下代碼:網絡

# import the necessary packages
import numpy as np
import argparse
import imutils
import time
import cv2
import os
 
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", required=True,
    help="path to input video")
ap.add_argument("-o", "--output", required=True,
    help="path to output video")
ap.add_argument("-y", "--yolo", required=True,
    help="base path to YOLO directory")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
    help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3,
    help="threshold when applyong non-maxima suppression")
args = vars(ap.parse_args())

一樣,首先從導入相關數據包和命令行參數開始。與以前不一樣的是,此腳本沒有-- image參數,取而代之的是量個視頻路徑:架構

  • -- input  :輸入視頻文件的路徑;
  • -- output  :輸出視頻文件的路徑;

視頻的輸入能夠是手機拍攝的短視頻或者是網上搜索到的視頻。另外,也能夠經過將多張照片合成爲一個短視頻也能夠。本博客使用的是在PyImageSearch上找到來自imutils的VideoStream類的 示例。
下面的代碼與處理圖形時候相同:app

# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
 
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
    dtype="uint8")
 
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
 
# load our YOLO object detector trained on COCO dataset (80 classes)
# and determine only the *output* layer names that we need from YOLO
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

在這裏,加載標籤並生成相應的顏色,而後加載YOLO模型並肯定輸出層名稱。
接下來,將處理一些特定於視頻的任務:dom

# initialize the video stream, pointer to output video file, and
# frame dimensions
vs = cv2.VideoCapture(args["input"])
writer = None
(W, H) = (None, None)
 
# try to determine the total number of frames in the video file
try:
    prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() \
        else cv2.CAP_PROP_FRAME_COUNT
    total = int(vs.get(prop))
    print("[INFO] {} total frames in video".format(total))
 
# an error occurred while trying to determine the total
# number of frames in the video file
except:
    print("[INFO] could not determine # of frames in video")
    print("[INFO] no approx. completion time can be provided")
    total = -1

在上述代碼塊中:ide

  • 打開一個指向視頻文件的文件指針,循環讀取幀;
  • 初始化視頻編寫器 (writer)和幀尺寸;
  • 嘗試肯定視頻文件中的總幀數(total),以便估計整個視頻的處理時間;

以後逐個處理幀:函數

# loop over frames from the video file stream
while True:
    # read the next frame from the file
    (grabbed, frame) = vs.read()
 
    # if the frame was not grabbed, then we have reached the end
    # of the stream
    if not grabbed:
        break
 
    # if the frame dimensions are empty, grab them
    if W is None or H is None:
        (H, W) = frame.shape[:2]

上述定義了一個 while循環, 而後從第一幀開始進行處理,而且會檢查它是不是視頻的最後一幀。接下來,若是還沒有知道幀的尺寸,就會獲取一下對應的尺寸。
接下來,使用當前幀做爲輸入執行YOLO的前向傳遞 :oop

ect Detection with OpenCVPython

    # construct a blob from the input frame and then perform a forward
    # pass of the YOLO object detector, giving us our bounding boxes
    # and associated probabilities
    blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
        swapRB=True, crop=False)
    net.setInput(blob)
    start = time.time()
    layerOutputs = net.forward(ln)
    end = time.time()

    # initialize our lists of detected bounding boxes, confidences,
    # and class IDs, respectively
    boxes = []
    confidences = []
    classIDs = []

在這裏,構建一個 blob 並將其傳遞經過網絡,從而得到預測。而後繼續初始化以前在圖像目標檢測中使用過的三個列表: boxes 、 confidencesclassIDs :學習

# loop over each of the layer outputs
    for output in layerOutputs:
        # loop over each of the detections
        for detection in output:
            # extract the class ID and confidence (i.e., probability)
            # of the current object detection
            scores = detection[5:]
            classID = np.argmax(scores)
            confidence = scores[classID]
 
            # filter out weak predictions by ensuring the detected
            # probability is greater than the minimum probability
            if confidence > args["confidence"]:
                # scale the bounding box coordinates back relative to
                # the size of the image, keeping in mind that YOLO
                # actually returns the center (x, y)-coordinates of
                # the bounding box followed by the boxes' width and
                # height
                box = detection[0:4] * np.array([W, H, W, H])
                (centerX, centerY, width, height) = box.astype("int")
 
                # use the center (x, y)-coordinates to derive the top
                # and and left corner of the bounding box
                x = int(centerX - (width / 2))
                y = int(centerY - (height / 2))
 
                # update our list of bounding box coordinates,
                # confidences, and class IDs
                boxes.append([x, y, int(width), int(height)])
                confidences.append(float(confidence))
                classIDs.append(classID)

在上述代碼中,與圖像目標檢測相同的有:

  • 循環輸出層和檢測;
  • 提取 classID並過濾掉弱預測;
  • 計算邊界框座標;
  • 更新各自的列表;

接下來,將應用非最大值抑制:

# apply non-maxima suppression to suppress weak, overlapping
    # bounding boxes
    idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],
        args["threshold"])
 
    # ensure at least one detection exists
    if len(idxs) > 0:
        # loop over the indexes we are keeping
        for i in idxs.flatten():
            # extract the bounding box coordinates
            (x, y) = (boxes[i][0], boxes[i][1])
            (w, h) = (boxes[i][2], boxes[i][3])
 
            # draw a bounding box rectangle and label on the frame
            color = [int(c) for c in COLORS[classIDs[i]]]
            cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
            text = "{}: {:.4f}".format(LABELS[classIDs[i]],
                confidences[i])
            cv2.putText(frame, text, (x, y - 5),
                cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

一樣的,在上述代碼中與圖像目標檢測相同的有:

  • 使用cv2.dnn.NMSBoxes函數用於抑制弱的重疊邊界框,能夠在此處閱讀有關非最大值抑制的更多信息;
  • 循環遍歷由NMS計算的idx,並繪製相應的邊界框+標籤;

最終的部分代碼以下:

# check if the video writer is None
    if writer is None:
        # initialize our video writer
        fourcc = cv2.VideoWriter_fourcc(*"MJPG")
        writer = cv2.VideoWriter(args["output"], fourcc, 30,
            (frame.shape[1], frame.shape[0]), True)
 
        # some information on processing single frame
        if total > 0:
            elap = (end - start)
            print("[INFO] single frame took {:.4f} seconds".format(elap))
            print("[INFO] estimated total time to finish: {:.4f}".format(
                elap * total))
 
    # write the output frame to disk
    writer.write(frame)
 
# release the file pointers
print("[INFO] cleaning up...")
writer.release()
vs.release()

總結一下:

  • 初始化視頻編寫器(writer),通常在循環的第一次迭代被初始化;
  • 打印出對處理視頻所需時間的估計;
  • 將幀(frame)寫入輸出視頻文件;
  • 清理和釋放指針;

如今,打開一個終端並執行如下命令:

$ python yolo_video.py --input videos/car_chase_01.mp4 \
    --output output/car_chase_01.avi --yolo yolo-coco
[INFO] loading YOLO from disk...
[INFO] 583 total frames in video
[INFO] single frame took 0.3500 seconds
[INFO] estimated total time to finish: 204.0238
[INFO] cleaning up...


圖6:YOLO應用於車禍視頻對象檢測

在視頻/ GIF中,你不只能夠看到被檢測到的車輛,還能夠檢測到人員以及交通訊號燈!
YOLO目標檢測器在該視頻中表現至關不錯。讓如今嘗試同一車追逐視頻中的不一樣視頻:

$ python yolo_video.py --input videos/car_chase_02.mp4 \
    --output output/car_chase_02.avi --yolo yolo-coco
[INFO] loading YOLO from disk...
[INFO] 3132 total frames in video
[INFO] single frame took 0.3455 seconds
[INFO] estimated total time to finish: 1082.0806
[INFO] cleaning up...


圖7:在該視頻中,使用OpenCV和YOLO對象檢測來找到該嫌疑人,嫌疑人如今已經逃離汽車並正位於停車場

YOLO再一次可以檢測到行人!或者嫌疑人回到他們的車中並繼續追逐:

$ python yolo_video.py --input videos/car_chase_03.mp4 \
    --output output/car_chase_03.avi --yolo yolo-coco
[INFO] loading YOLO from disk...
[INFO] 749 total frames in video
[INFO] single frame took 0.3442 seconds
[INFO] estimated total time to finish: 257.8418
[INFO] cleaning up...


圖8: YOLO是一種快速深度學習對象檢測器,可以在使用GPU的狀況下用於實時視頻

最後一個例子,讓咱們看看如何使用YOLO做爲構建流量計數器:

$ python yolo_video.py --input videos/overpass.mp4 \
    --output output/overpass.avi --yolo yolo-coco
[INFO] loading YOLO from disk...
[INFO] 812 total frames in video
[INFO] single frame took 0.3534 seconds
[INFO] estimated total time to finish: 286.9583
[INFO] cleaning up...


圖9:立交橋交通視頻代表,YOLO和OpenCV可準確、快速地檢測汽車

下面彙總YOLO視頻對象檢測完整視頻:

YOLO目標檢測器的侷限和缺點

YOLO目標檢測器的最大限制和缺點是:

  • 它並不總能很好地處理小物體;
  • 它尤爲不適合處理密集的對象;

限制的緣由是因爲YOLO算法其自己:

  • YOLO對象檢測器將輸入圖像劃分爲SxS網格,其中網格中的每一個單元格僅預測單個對象;
  • 若是單個單元格中存在多個小對象,則YOLO將沒法檢測到它們,最終致使錯過對象檢測;

所以,若是你的數據集是由許多靠近在一塊兒的小對象組成時,那麼就不該該使用YOLO算法。就小物體而言,更快的R-CNN每每效果最好,可是其速度也最慢。在這裏也可使用SSD算法, SSD一般在速度和準確性方面也有很好的權衡。
值得注意的是,在本教程中,YOLO比SSD運行速度慢,大約慢一個數量級。所以,若是你正在使用預先訓練的深度學習對象檢測器供OpenCV使用,可能須要考慮使用SSD算法而不是YOLO算法。
所以,在針對給定問題選擇對象檢測器時,我傾向於使用如下準則:

  • 若是知道須要檢測的是小物體而且速度方面不做求,我傾向於使用faster R-CNN算法;
  • 若是速度是最重要的,我傾向於使用YOLO算法;
  • 若是須要一個平衡的表現,我傾向於使用SSD算法;

想要訓練本身的深度學習目標檢測器?

圖10:在個人書「使用Python進行計算機視覺的深度學習」中,我介紹了多種對象檢測算法,包括faster R-CNN、SSD、RetinaNet。書中講述瞭如何建立對象檢測圖像數據集、訓練對象檢測器並進行預測。

在本教程中,使用的YOLO模型是在COCO數據集上預先訓練的.。可是,若是想在本身的數據集上訓練深度學習對象檢測器,該如何操做呢?
大致思路是本身標註數據集,按照darknet網站上的指示及網上博客本身更改相應的參數訓練便可。或者在個人書「 深度學習計算機視覺與Python」中,詳細講述瞭如何將faster R-CNN、SSD和RetinaNet應用於:

  • 檢測圖像中的徽標;
  • 檢測交通標誌;
  • 檢測車輛的前視圖和後視圖(用於構建自動駕駛汽車應用);
  • 檢測圖像和視頻流中武器;

書中的全部目標檢測章節都包含對算法和代碼的詳細說明,確保你可以成功訓練本身的對象檢測器。在這裏能夠了解有關個人書的更多信息(並獲取免費的示例章節和目錄)。

總結

在本教程中,咱們學習瞭如何使用Deep Learning、OpenCV和Python完成YOLO對象檢測。而後,咱們簡要討論了YOLO架構,並用Python實現:

  • 將YOLO對象檢測應用於單個圖像;
  • 將YOLO對象檢測應用於視頻流;

在配備的3GHz Intel Xeon W處理器的機器上,YOLO的單次前向傳輸耗時約0.3秒; 可是,使用單次檢測器(SSD),檢測耗時只需0.03秒,速度提高了一個數量級。對於使用OpenCV和Python在CPU上進行基於實時深度學習的對象檢測,你可能須要考慮使用SSD算法。
若是你有興趣在本身的自定義數據集上訓練深度學習對象檢測器,請務必參閱寫的「使用Python進行計算機視覺深度學習」,其中提供了有關如何成功訓練本身的檢測器的詳細指南。或者參看本人以前的博客

原文連接

相關文章
相關標籤/搜索