這題寫起來真的有點麻煩,按照官方題解的寫法
先建圖,而後求強連通份量,而後判斷掉不符合條件的換
最後作dp轉移便可
雖然看起來複雜度很高,可是n只有15,因此問題不大ios
#include <iostream> #include <fstream> #include <vector> #include <set> #include <map> #include <bitset> #include <algorithm> #include <iomanip> #include <cmath> #include <ctime> #include <functional> #include <unordered_set> #include <unordered_map> #include <queue> #include <deque> #include <stack> #include <complex> #include <cassert> #include <random> #include <cstring> #include <numeric> #define ll long long #define ld long double #define null NULL #define all(a) a.begin(), a.end() #define forn(i, n) for (int i = 0; i < n; ++i) #define sz(a) (int)a.size() #define lson l , m , rt << 1 #define rson m + 1 , r , rt << 1 | 1 #define bitCount(a) __builtin_popcount(a) template<class T> int gmax(T &a, T b) { if (b > a) { a = b; return 1; } return 0; } template<class T> int gmin(T &a, T b) { if (b < a) { a = b; return 1; } return 0; } using namespace std; string to_string(string s) { return '"' + s + '"'; } string to_string(const char* s) { return to_string((string) s); } string to_string(bool b) { return (b ? "true" : "false"); } template <typename A, typename B> string to_string(pair<A, B> p) { return "(" + to_string(p.first) + ", " + to_string(p.second) + ")"; } template <typename A> string to_string(A v) { bool first = true; string res = "{"; for (const auto &x : v) { if (!first) { res += ", "; } first = false; res += to_string(x); } res += "}"; return res; } void debug_out() { cerr << endl; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } #ifdef LOCAL #define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif const int MAXN = 75005; vector<int> graph[MAXN]; vector<int> group[MAXN]; int dfn[MAXN], low[MAXN]; int dcnt; int col[MAXN + 5], ccnt; bool vis[MAXN + 5]; int stk[MAXN + 5], tp; vector<pair<int, int>> dp[32768]; void Tarjan_scc(int u) { dfn[u] = ++dcnt, low[u] = dcnt, vis[u] = true; stk[++tp] = u; for(int i = 0; i < (int)graph[u].size(); i++) { int v = graph[u][i]; if(!dfn[v]) { Tarjan_scc(v); low[u] = min(low[u], low[v]); } else if(vis[v]) low[u] = min(low[u], low[v]); } if(dfn[u] == low[u]) { ++ccnt; while(true) { col[stk[tp]] = ccnt; vis[stk[tp]] = false; if(stk[tp--] == u) break; } } } int main() { int k; while(~scanf("%d", &k)) { tp = -1; ccnt = 0; dcnt = 0; for(int i = 0; i < MAXN; ++i) { dfn[i] = 0; graph[i].clear(); group[i].clear(); } vector<ll> sum; vector<pair<int, int> > vc; map<ll, pair<int, int> > mp; int tot = 0; ll allSum = 0; for(int i = 0; i < k; ++i) { int x; scanf("%d", &x); ll tmpSum = 0; for(int j = 0; j < x; ++j) { int y; scanf("%d", &y); vc.push_back(make_pair(y, i)); mp[y] = make_pair(tot, i); tot ++; tmpSum += y; } sum.push_back(tmpSum); allSum += tmpSum; } // debug(allSum); if(allSum % k) { printf("No\n"); continue; } allSum /= k; set<int> selfCircle; set<pair<int, int>> hasEdge; // debug(allSum); for(int i = 0, len = vc.size(); i < len; ++i) { ll searchNum = allSum - sum[vc[i].second] + vc[i].first; if(mp.find(searchNum) == mp.end()) continue; else if( mp[searchNum].second == vc[i].second && mp[searchNum].first != i) { // solve specfial condition continue; } else if(mp[searchNum].first == i) { // debug(i); selfCircle.insert(i); } graph[i].push_back(mp[searchNum].first); hasEdge.insert(make_pair(i, mp[searchNum].first)); debug(i, mp[searchNum].first); } for(int i = 0; i < tot; ++i) { if(!dfn[i]) Tarjan_scc(i); } for(int i = 0; i < tot; ++i) { // printf("%d ", col[i]); group[col[i]].push_back(i); } // printf("\n"); for(int i = 1; i <= ccnt; ++i) { // debug(i, group[i].size()); if(group[i].size() == 1 && selfCircle.count(group[i][0])) { int id = group[i][0]; vector<pair<int, int> > tmpPair; tmpPair.push_back(make_pair(vc[id].first, vc[id].second + 1)); dp[1<<vc[id].second] = tmpPair; // debug(dp[1<<vc[id].second]); } else if(group[i].size() > 1) { vector<pair<int, int> > tmpPair; int tmp = 0; int len = group[i].size(); bool suc = true; for(int j = 0; j < len; ++j) { int to = group[i][j]; if(tmp & (1<<vc[to].second)) { suc = false; break; } tmp |= 1<<vc[to].second; } if(suc == false) { continue; } for(int j = 0; j < len; ++j) { for(int k = 0; k < len; ++k) { int fr = group[i][j]; int to = group[i][k]; if(hasEdge.count(make_pair(fr, to))) { tmpPair.push_back(make_pair(vc[to].first, vc[fr].second + 1)); } } } dp[tmp] = tmpPair; // debug(dp[tmp], tmp); } } for(int i = 0; i < (1<<k); ++i) { for (int s=(i-1)&i; s; s=(s-1)&i) { int t = i ^ s; if(dp[s].size() > 0 && dp[t].size() > 0) { dp[i] = dp[s]; dp[i].insert(dp[i].end(), dp[t].begin(), dp[t].end()); break; } } } auto cmp = [&](pair<int, int> &A, pair<int, int> &B) { return mp[A.first].second < mp[B.first].second; }; int end = (1<<k) - 1; if(dp[end].size() > 0 ) { printf("Yes\n"); // debug(dp[end]); sort(dp[end].begin(), dp[end].end(), cmp); for(int i = 0; i < k; ++i) { printf("%d %d\n", dp[end][i].first, dp[end][i].second); } } else printf("No\n"); } return 0; }