原創公衆號:bigsai
原創不易,若是有收穫請不要吝嗇你的一鍵三連!java
你們好,我是bigsai!最近,大數加減頻頻登上筆試的舞臺,小夥伴們在羣裏也分享本身遇到面試官碰到大數運算的題目,想着這麼重要而簡單的知識點我還沒寫過,那得好好和你們一塊兒總結一下。git
各位有過度類刷題的小夥伴,可能看到不少人分類 字符串、貪心、動態規劃、bfs、dfs、大數、數論等,初聽大數,你可能會差別:大數是個啥?聽起來怪高大上的。github
大數,其實就是很大很大數字(可能遠超3二、64位,基礎類型沒法表示)的加減法,在Java中咱們可使用一個大數類(BigInteger等)很容易解決大數的各類運算,但若是遇到面試官他確定會讓你手寫的。面試
這個數字通常用字符串、鏈表等形式表示、返回,大數運算的核心就是:模擬,模擬咱們平常用紙筆算數字的加減乘除流程,而後再根據計算機、編程語言等特性適當存儲計算便可,不過,大數除法運算稍微特殊一點,和咱們直接模擬的思惟方式稍有不一樣。算法
大數加法是最簡單的,簡單模擬便可。首先,咱們想一下兩個數加法的流程:從右向左計算求和、進位,一直到最後。編程
在編程語言中一樣也是模擬從右向左逐位相加的過程,不過在具體實現上須要注意一些細節。數組
一、枚舉字符串將其轉換程char[]
提升效率數據結構
二、從右往左進行計算,能夠將結果放到一個數組中最後組成字符串,也可使用StringBuider拼接,拼接的時候最後要逆置一下順序。app
三、餘數每次疊加過須要清零,兩數相加若是大於等於10即有餘數,添加到結果中該位置的數也應該是該數%10的結果。編程語言
四、計算完最後還要看看餘數是否爲1,若是爲1須要將其添加到結果,例如 "991"+"11"
算三個位置爲002
但還有一個餘數須要添加,因此應該是1002
。
固然在具體實現上方法較多,你能夠首先就將字符串逆置而後從前日後就能夠計算了。固然我這裏實現的是字符串從後向前各個位對應計算,而後將結果順序添加到StringBuilder上。
這題在力扣【415兩數相加】能夠檢驗本身代碼,實現代碼爲:
public String addStrings(String num1, String num2) { // 公衆號:bigsai 歡迎你的關注 int len1=num1.length()-1,len2=num2.length()-1; char ch1[]=num1.toCharArray(); char ch2[]=num2.toCharArray(); StringBuilder sb=new StringBuilder(); int remainder =0;//計算餘數 while (len1>=0||len2>=0) { int n1=len1>=0?(ch1[len1--]-'0'):0; int n2=len2>=0?(ch2[len2--]-'0'):0; int num=n1+n2+remainder;//求和對應數字 remainder=num/10;//是否進位 sb.append(num%10);// 添加到結果字符串中 } if(remainder>0)//是否還須要進位 { sb.append(remainder); } //反裝即爲結果 return sb.reverse().toString(); }
加法對應的就是減法,有了上面大數加法的實現思路,那麼我想你在大數減法也應該有點想法,可是減法和加法不一樣的是減法有位置的區別,加法須要進位而減法須要借位。而且大整正數減法可能產生正負也不必定。
兩個正數,若是大數減去小數,那麼一切正常,結果是一個正數;但若是小數減去大數,那麼結果將是一個負數,而且結果處理起來比較麻煩。 因此在這裏所有轉成大-小處理(大-小不存在不能借位的狀況)。
一、執行計算前首先比較減數(num1
)和被減數(num2
)的大小,若是num1>num2
,那麼就模擬num1-num2
的過程,若是num1<num2
,那麼結果就爲-(num2-num1)
。固然能夠爲了穩定模擬時候一個大一個小,可將num1
始終指向較大的那個數,少寫一個if/else.
二、在比較兩個數字大小的時候,由於是字符形式,首先比較兩個字符串的長度,長的那個更大短的那個更小,若是兩個字符串等大,那麼就能夠經過字典序從前日後進行比較(Java可直接使用compareTo方法)。
三、和加法不一樣的是,減法前面可能產生若干前綴0,這些0是須要你去掉的,例如"1100"-"1000"
計算獲得的結果位"0100"
,你就要吧前面的0去掉返回"100"
。
四、具體實現的時候和加法類似,若是使用StringBuilder存儲,須要逆置順序,若是是個負數,前面還要加上'-'
.
五、每一個位置正常進行減法運算,若是值小於0,那麼就須要向上借位(+10),那麼處理上一位進行減法時候還要將借位的處理一下。
這題在力扣上沒有原題,可是能夠在小米OJ【大數相減】上驗證本身代碼的正確性,具體實現的代碼爲:
public static boolean compare(String num1,String num2) { if(num1.length()<num2.length()) return false; else if(num1.length()>num2.length()) return true; else return num1.compareTo(num2)>0; } public static String subtractString(String num1,String num2) { char sign='+';//正負號 //讓num1>num2 若是num1<num2 那麼結果就是—(num2-num1) //能夠先將num1和num2交換和前面狀況統一 if(!compare(num1,num2)) { sign='-'; String team = num2; num2 = num1; num1 = team; } int len1=num1.length()-1; int len2=num2.length()-1; char ch1[] = num1.toCharArray(); char ch2[] = num2.toCharArray(); StringBuilder sb=new StringBuilder(); int borrow=0;//借位 while (len1>=0||len2>=0) { int n1=len1>=0?(ch1[len1--]-'0'):0; int n2=len2>=0?(ch2[len2--]-'0'):0; int num=n1-n2-borrow; borrow=0; if(num<0)//須要向前借位 { borrow=1; num+=10; } sb.append(num); } sb=sb.reverse();//須要先翻轉 int index = 0;//去掉前面沒用的’0‘ while (index<sb.length()&&sb.charAt(index) == '0') { index++; } //若是兩個數相同 直接返回"0" if(index==sb.length()) return "0"; if(sign=='+')//若是正數 return sb.substring(index); else return sign+sb.substring(index);//負數須要返回 }
大數乘法乍一想可能比較複雜,由於乘法比起加法可能進位不光是1,還有兩個數各類位置都須要相乘計算,這時候就須要咱們化繁爲簡了。
多*多
考慮起來可能有些麻煩,可是若是多*一
考慮起來呢?若是是多位乘以一位數,那麼就拿一位的分別乘以多位數的個位、十位、百位,在計算的同時考慮一下進位的狀況。
可是也能夠先直接用int類型數組存儲各位的乘積而後從右向左進行進位,以下圖所示。
而多*多
也是這個道理,將不一樣位乘積先疊加到對應位置上,而後從右向左進位,一直到不須要進位爲止。
你可能會疑問,若是兩個數組的長度分別爲a和b這個數組到底該開多大呢?
這題有力扣對應題能夠去試試【43字符串相乘】,具體代碼位:
public String multiply(String num1, String num2) { if("0".equals(num1)||"0".equals(num2))return "0"; char a[]=num1.toCharArray(); char b[]=num2.toCharArray(); int value[]=new int[a.length+b.length]; for(int i=a.length-1;i>=0;i--) { for(int j=b.length-1;j>=0;j--) { int index=a.length-1-i+b.length-1-j; value[index]+=(a[i]-'0')*(b[j]-'0'); } } for(int i=0;i<value.length-1;i++) { value[i+1]+=value[i]/10; value[i]=value[i]%10; } int index=value.length-1; while(value[index]==0) {index--;} StringBuilder sBuilder=new StringBuilder(); while (index>=0) { sBuilder.append(value[index--]); } return sBuilder.toString(); }
大數加減乘都搞定了,經過模擬來實現,可是大數除法也經過模擬來實現?
並非,對於大數a/b,通常最多要求求到其整數解或者餘數,即a/b=c……d(a,b,c,d均爲整);也就是a裏面有c個b,而且還剩下d。核心是先求c是多少,對於程序來講,能夠經過枚舉啊,將除法變成減法,從a中不斷減d,一直到不能減爲止。
可是有個問題,若是被除數a很大很大,可能有居多個b,那麼這樣時間複雜度過高了,不可能執行那麼屢次,那麼須要怎麼樣去優化這個方法呢?
那就要加速尋找次數,減小這個減法的次數了,減法次數減少的一個最好方案就是能不能擴大除數b。若是b後面加個'0'
,那麼算出來的結果就乘以10,減法的次數變成原來十分之一。根據這個思想咱們能夠一直每次找到b的最大10的倍數(小於a)計算減的次數再換算成減b的總詞數,將結果要以字符串方式保留,後面一直迭代到最後爲止,這雖然是一道除法運算的題,可是也蘊涵減法和加法(次數疊加到結果中)。
固然,也有一些人使用二分法來壓縮尋找能夠被減的次數也是能夠的(加法能夠迭代數字實現二分倍數),具體實現的話也不是很困難,可是代碼量可能比較多因此通常的面試筆試不會讓你現場寫的,因此好好掌握前面的減法、減法、乘法的代碼便可。
固然,若是你依然很想看大數除法部分的代碼,能夠百度搜一下或者在文末評論催更一下,若是有感興趣的能夠後面把代碼補充上。
到這裏,大數的加減乘除基本都講解完啦,不知道你有沒有收穫,由於這裏的大數都是用字符串的方式存儲和處理,遇到的最多,可是也可能遇到一些鏈表、數組等其餘形式存儲的須要處理,可是總體的思想都是同樣的。
文章已收錄在 全網都在關注的數據結構與算法學習倉庫 歡迎star