如今個人安裝的深度學習的軟件大都在臺式機上進行的,今天要裝的是caffe框架。個人操做系統是ubuntu14.04 html
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev# ubuntu系統獨有安裝包
htthttps://github.com/jayrambhia/Install-OpenCV,下載後解壓,而後進去該目錄,選擇本身的操做系統,好比個人是Ubuntu,執行 python
$ cd Ubuntu $ chmod +x * $ ./opencv_latest.sh #這是最新的3.1.0
好吧,這個過程稍長,可能要30分鐘左右。 git
Automatic Tuned Linear Algebra Software,BLAS線性算法庫的優化版本,安裝步驟: github
sudo apt-get install libatlas-base-dev
sudo apt-get install --no-install-recommends libboost-all-dev
最好只剩下caffe,用git命令或者是在https://github.com/BVLC/caffe 下載 算法
下載後,進入Caffe目錄執行 cp Makefile.config.example Makefile.config編譯Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 0 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 1 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := atlas # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
最後是編譯,執行如下三條命令: make all -j4 make test make runtestmake all 發生以下錯誤:
/usr/bin/ld: cannot find -lcblas /usr/bin/ld: cannot find -latlas collect2: error: ld returned 1 exit status make: *** [.build_release/lib/libcaffe.so.1.0.0-rc3] Error 1
安裝以下庫: shell
sudo apt-get install libatlas-dev sudo apt-get install liblapack-dev sudo apt-get install libatlas-base-dev現次make all -j4,又有幾個錯誤,真是愈來愈感到坑,不過認真好了一下,真是同一種錯誤,找不到cv,多是個人makefile.config沒有把opencv的選擇選上,選上以後,再次make all -j4就能夠了,好開心。
後面跑make test 與make runtest天然沒什麼問題: ubuntu
由於當時還沒安裝matlab,因此沒有裝matlabwarp與pythowarp相關的,沒看具體看這些接口具體怎樣用。 app
參考: 框架
https://github.com/BVLChttps://caffe/wiki/Ubuntu-15.10-Installation-Guide python2.7
http://weibo.com/p/2304189db078090102vdvx
http://www.cnblogs.com/cj695/p/4498270.html
http://caffe.berkeleyvision.org/installation.html#compilation(caffe官網)