有一個簡單有向圖。每一個點有點權。dom
有三種操做:spa
\(n\leq 100000,m,q\leq 200000\)code
把操做反過來,每次只有加邊操做。get
用線段樹維護同一個強連通份量內的點的點權。string
用總體二分去計算每條邊的兩個端點被合併的時間。it
每次把加入時間 \(\leq tmid\) 的邊拿出來跑一次 tarjan,就能夠知道哪些邊在 \(\leq tmid\) 的時間內被縮掉了。io
用帶撤回的並查集維護便可。function
時間複雜度:\(O((n+m+q)\log^2 n)\)class
#pragma GCC optimize ("-O2") #include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<ctime> #include<functional> #include<cmath> #include<vector> #include<assert.h> #include<map> using namespace std; using std::min; using std::max; using std::swap; using std::sort; using std::reverse; using std::random_shuffle; using std::lower_bound; using std::upper_bound; using std::unique; using std::vector; typedef long long ll; typedef unsigned long long ull; typedef double db; typedef long double ldb; typedef std::pair<int,int> pii; typedef std::pair<ll,ll> pll; void open(const char *s){ #ifndef ONLINE_JUDGE char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout); #endif } void open2(const char *s){ #ifdef DEBUG char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout); #endif } int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;} void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');} int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;} int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;} const int N=1000010; int n,m,q; namespace seg { ll s[10*N]; int sz[10*N]; int lc[10*N],rc[10*N]; int cnt; #define mid ((L+R)>>1) void mt(int p) { s[p]=s[lc[p]]+s[rc[p]]; sz[p]=sz[lc[p]]+sz[rc[p]]; } int insert(int p,int x,int v,int L,int R) { if(!p) p=++cnt; if(L==R) { s[p]+=x*v; sz[p]+=v; return p; } if(x<=mid) lc[p]=insert(lc[p],x,v,L,mid); if(x>mid) rc[p]=insert(rc[p],x,v,mid+1,R); mt(p); return p; } int merge(int p1,int p2,int L,int R) { if(!p1||!p2) return p1+p2; if(L==R) { s[p1]+=s[p2]; sz[p1]+=sz[p2]; return p1; } lc[p1]=merge(lc[p1],lc[p2],L,mid); rc[p1]=merge(rc[p1],rc[p2],mid+1,R); mt(p1); return p1; } ll query(int p,int k,int L,int R) { if(k>=sz[p]) return s[p]; if(L==R) return (ll)k*L; ll res=query(rc[p],k,mid+1,R); if(k>sz[rc[p]]) res+=query(lc[p],k-sz[rc[p]],L,mid); return res; } } struct edge { int x,y,t; }; edge b[N]; vector<pii> g2[N]; int t; namespace solve { int f[N],r[N]; int st_r[5*N],st_x[5*N]; int tot,now; int find(int x) { return f[x]==x?x:find(f[x]); } void merge(int x,int y) { x=find(x); y=find(y); if(x==y) return; if(r[x]>r[y]) swap(x,y); tot++; st_r[tot]=r[y]; st_x[tot]=x; f[x]=y; if(r[x]==r[y]) r[y]++; } void pop() { r[f[st_x[tot]]]=st_r[tot]; f[st_x[tot]]=st_x[tot]; tot--; } vector<int> g[N]; int dfn[N],low[N],_ti; int vis[N],st[N],top; int c[N],ti; edge b1[N],b2[N]; int d[N]; int cnt; void dfs(int x) { vis[x]=1; st[++top]=x; dfn[x]=low[x]=++_ti; for(auto v:g[x]) if(vis[v]!=2) { if(!vis[v]) dfs(v); low[x]=min(low[x],low[v]); } if(low[x]>=dfn[x]) { int v; do { v=st[top--]; vis[v]=2; if(v!=x) merge(v,x); } while(v!=x); } } void gao(int tl,int tr,int l,int r) { if(l>r) return; int tmid=(tl+tr)>>1; int now=tot; ti++; int cnt=0; for(int i=l;i<=r;i++) { if(b[i].t<=tmid) { int x=find(b[i].x); int y=find(b[i].y); if(c[x]!=ti) { d[++cnt]=x; vis[x]=0; c[x]=ti; g[x].clear(); } if(c[y]!=ti) { d[++cnt]=y; vis[y]=0; c[y]=ti; g[y].clear(); } g[x].push_back(y); } } top=0; _ti=0; for(int i=1;i<=cnt;i++) if(!vis[d[i]]) dfs(d[i]); int t1=0,t2=0; for(int i=l;i<=r;i++) { int flag=0; if(b[i].t<=tmid) { int x=b[i].x; int y=b[i].y; if(find(x)==find(y)) flag=1; } if(flag) b1[++t1]=b[i]; else b2[++t2]=b[i]; } if(tl==tr) { for(int i=1;i<=t1;i++) g2[tl].push_back(pii(b1[i].x,b1[i].y)); while(tot>now) pop(); } else { for(int i=1;i<=t1;i++) b[l+i-1]=b1[i]; for(int i=1;i<=t2;i++) b[l+t1+i-1]=b2[i]; gao(tmid+1,tr,l+t1,r); while(tot>now) pop(); gao(tl,tmid,l,l+t1-1); } } void solve() { for(int i=1;i<=n;i++) { f[i]=i; r[i]=1; } gao(0,q,1,t); } } map<int,int> g[N]; int rt[N]; int f[N]; int a[N]; int op[N],qx[N],qy[N]; ll ans[N]; const int _=1e9; int find(int x) { return f[x]==x?x:f[x]=find(f[x]); } void merge(int x,int y) { x=find(x); y=find(y); if(x!=y) { rt[x]=seg::merge(rt[x],rt[y],1,_); f[y]=x; } } int main() { open("f"); scanf("%d%d%d",&n,&m,&q); for(int i=1;i<=n;i++) // scanf("%d",&a[i]); a[i]=rd(); int x,y; for(int i=1;i<=m;i++) { // scanf("%d%d",&x,&y); x=rd(); y=rd(); g[x][y]=1; } for(int i=q;i>=1;i--) { // scanf("%d%d%d",&op[i],&x,&y); op[i]=rd(); x=rd(); y=rd(); if(op[i]==1) { qx[i]=x; qy[i]=y; g[x].erase(y); t++; b[t].t=i; b[t].x=x; b[t].y=y; } else if(op[i]==2) { qx[i]=x; qy[i]=-y; a[x]+=y; } else { qx[i]=x; qy[i]=y; } } for(int i=1;i<=n;i++) for(auto v:g[i]) { t++; b[t].t=0; b[t].x=i; b[t].y=v.first; } solve::solve(); for(int i=1;i<=n;i++) f[i]=i; for(int i=1;i<=n;i++) rt[i]=seg::insert(rt[i],a[i],1,1,_); for(int i=0;i<=q;i++) { for(auto v:g2[i]) merge(v.first,v.second); if(!i) continue; x=qx[i]; y=qy[i]; if(op[i]==2) { int z=find(x); rt[z]=seg::insert(rt[z],a[x],-1,1,_); a[x]+=y; rt[z]=seg::insert(rt[z],a[x],1,1,_); } else { x=find(x); ans[i]=seg::query(rt[x],y,1,_); } } for(int i=q;i>=1;i--) if(op[i]==3) printf("%lld\n",ans[i]); return 0; }