aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) | When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type, while avoiding unnecessary allocations. Like in groupByKey , the number of reduce tasks is configurable through an optional second argument. |
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type, U, than the type of the values in this RDD,
* V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
* as in scala.TraversableOnce. The former operation is used for merging values within a
* partition, and the latter is used for merging values between partitions. To avoid memory
* allocation, both of these functions are allowed to modify and return their first argument
* instead of creating a new U.
*/
def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type, U, than the type of the values in this RDD,
* V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
* as in scala.TraversableOnce. The former operation is used for merging values within a
* partition, and the latter is used for merging values between partitions. To avoid memory
* allocation, both of these functions are allowed to modify and return their first argument
* instead of creating a new U.
*/
def aggregateByKey[U: ClassTag](zeroValue: U, numPartitions: Int)(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type, U, than the type of the values in this RDD,
* V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
* as in scala.TraversableOnce. The former operation is used for merging values within a
* partition, and the latter is used for merging values between partitions. To avoid memory
* allocation, both of these functions are allowed to modify and return their first argument
* instead of creating a new U.
*/
def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]
def seq(a:Int,b:Int):Int={ println("seq: " + a + "\t" + b) math.max(a,b) } def comb(a:Int,b:Int):Int = { println("comb: " + a + "\t" + b) a+b } val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(2,4),(2,5))) rdd.aggregateByKey(0)(seq,comb).collect rdd.aggregateByKey(6)(seq,comb).collect
scala> def seq(a:Int,b:Int):Int={ | println("seq: " + a + "\t" + b) | math.max(a,b) | } seq: (a: Int, b: Int)Int scala> scala> def comb(a:Int,b:Int):Int = { | println("comb: " + a + "\t" + b) | a+b | } comb: (a: Int, b: Int)Int scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(2,4),(2,5))) rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[11] at parallelize at <console>:26 scala> rdd.aggregateByKey(0)(seq,comb).collect seq: 0 3 seq: 3 2 seq: 3 4 seq: 0 3 seq: 3 4 seq: 4 5 res20: Array[(Int, Int)] = Array((1,4), (2,5)) scala> rdd.aggregateByKey(6)(seq,comb).collect seq: 6 3 seq: 6 2 seq: 6 4 seq: 6 3 seq: 6 4 seq: 6 5 res21: Array[(Int, Int)] = Array((1,6), (2,6))
可是爲何沒有執行comb呢?node
sortByKey([ascending], [numTasks]) | When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument. |
從下面的註釋中能夠看到在每個partition中元素是有序的,可是在整個rdd中數據多是無序的。
/**
* Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling
* `collect` or `save` on the resulting RDD will return or output an ordered list of records
* (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in
* order of the keys).
*/
// TODO: this currently doesn't work on P other than Tuple2!
def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)
: RDD[(K, V)]
val rdd = sc.parallelize(List((3,"sd"),(1,"fd"),(2,"dfh"),(4,"kjh"),(7,"kf"),(5,"nb"),(100,"jd"),(63,"mm"),(42,"kk"),(99,"ll"),(10,"ll"),(11,"ll"),(12,"ll")),1) val rdd1 = rdd.sortByKey(true,1) rdd1.collect val rdd2 = rdd.sortByKey(true,3) rdd2.foreachPartition( x=>{ while(x.hasNext){ println(x.next) } println("============") } ) val rdd2 = rdd.sortByKey(false,4) val rdd2 = rdd.sortByKey(true,3) rdd2.foreachPartition( x=>{ while(x.hasNext){ println(x.next) } println("============") } )
scala> val rdd = sc.parallelize(List((3,"sd"),(1,"fd"),(2,"dfh"),(4,"kjh"),(7,"kf"),(5,"nb"),(100,"jd"),(63,"mm"),(42,"kk"),(99,"ll"),(10,"ll"),(11,"ll"),(12,"ll")),1) rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[24] at parallelize at <console>:26 scala> val rdd1 = rdd.sortByKey(true,1) rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[25] at sortByKey at <console>:28 scala> rdd1.collect res42: Array[(Int, String)] = Array((1,fd), (2,dfh), (3,sd), (4,kjh), (5,nb), (7,kf), (10,ll), (11,ll), (12,ll), (42,kk), (63,mm), (99,ll), (100,jd)) scala> val rdd2 = rdd.sortByKey(true,3) rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[28] at sortByKey at <console>:28 scala> rdd2.foreachPartition( | x=>{ | while(x.hasNext){ | println(x.next) | } | println("============") | } | ) (1,fd) (2,dfh) (3,sd) (4,kjh) (5,nb) ============ (7,kf) (10,ll) (11,ll) (12,ll) ============ (42,kk) (63,mm) (99,ll) (100,jd) ============ scala> val rdd2 = rdd.sortByKey(false,4) rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[34] at sortByKey at <console>:28 scala> rdd2.foreachPartition( | x=>{ | while(x.hasNext){ | println(x.next) | } | println("============") | } | ) (100,jd) (99,ll) (63,mm) ============ (42,kk) (12,ll) (11,ll) ============ (10,ll) (7,kf) (5,nb) ============ (4,kjh) (3,sd) (2,dfh) (1,fd) ============
/**
* Return this RDD sorted by the given key function.
*/
def sortBy[K](
f: (T) => K,
ascending: Boolean = true,
numPartitions: Int = this.partitions.length)
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
val a = Array(9,2,8,1,5,6,4,7,3) val rdd = sc.parallelize(a) rdd.collect rdd.sortBy(x=>x).collect rdd.sortBy(x=>x,false,3).collect
scala> val a = Array(9,2,8,1,5,6,4,7,3) a: Array[Int] = Array(9, 2, 8, 1, 5, 6, 4, 7, 3) scala> val rdd = sc.parallelize(a) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[35] at parallelize at <console>:28 scala> rdd.collect res46: Array[Int] = Array(9, 2, 8, 1, 5, 6, 4, 7, 3) scala> rdd.sortBy(x=>x).collect res49: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9) scala> rdd.sortBy(x=>x,false,3).collect res50: Array[Int] = Array(9, 8, 7, 6, 5, 4, 3, 2, 1)
join(otherDataset, [numTasks]) | When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer joins are supported through leftOuterJoin , rightOuterJoin , and fullOuterJoin . |
同SQL語句中join,leftOuterJoin同SQL中left outer join,rightOuterJoin同SQL語句中right outer join,fullOuterJoin同SQL語句中的full outer joines6
scala> val a = List((1,"a"),(2,"b"),(3,"c")) a: List[(Int, String)] = List((1,a), (2,b), (3,c)) scala> val rdd1 = sc.parallelize(a) rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[47] at parallelize at <console>:28 scala> val b = List((1,"A"),(2,"B"),(4,"D")) b: List[(Int, String)] = List((1,A), (2,B), (4,D)) scala> val rdd2 = sc.parallelize(b) rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[48] at parallelize at <console>:28 scala> val rdd = rdd1.join(rdd2) rdd: org.apache.spark.rdd.RDD[(Int, (String, String))] = MapPartitionsRDD[51] at join at <console>:34 scala> rdd.collect res51: Array[(Int, (String, String))] = Array((1,(a,A)), (2,(b,B))) scala> rdd1.leftOuterJoin(rdd2) res52: org.apache.spark.rdd.RDD[(Int, (String, Option[String]))] = MapPartitionsRDD[54] at leftOuterJoin at <console>:35 scala> rdd1.leftOuterJoin(rdd2).collect res53: Array[(Int, (String, Option[String]))] = Array((1,(a,Some(A))), (3,(c,None)), (2,(b,Some(B)))) scala> rdd1.rightOuterJoin(rdd2).collect res54: Array[(Int, (Option[String], String))] = Array((4,(None,D)), (1,(Some(a),A)), (2,(Some(b),B))) scala> rdd1.fullOuterJoin(rdd2).collect res55: Array[(Int, (Option[String], Option[String]))] = Array((4,(None,Some(D))), (1,(Some(a),Some(A))), (3,(Some(c),None)), (2,(Some(b),Some(B))))
無論是join,leftOuterJoin,rightOuterJoin仍是fullOuterJoin,除上述入參爲otherDataset外,還包含下面兩種方式redis
(other: RDD[(K, W)], numPartitions: Int)
(other: RDD[(K, W)], partitioner: Partitioner)
cogroup(otherDataset, [numTasks]) | When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (Iterable<V>, Iterable<W>)) tuples. This operation is also called groupWith . |
/**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]
scala> val rdd1 = sc.parallelize(List((1,"a"),(2,"b"),(3,"c"),(1,"z"))) rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[0] at parallelize at <console>:24 scala> val rdd2 = sc.parallelize(List((1,"A"),(2,"B"),(2,"C"),(4,"D"))) rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[1] at parallelize at <console>:24 scala> val rdd = rdd1.cogroup(rdd2) rdd: org.apache.spark.rdd.RDD[(Int, (Iterable[String], Iterable[String]))] = MapPartitionsRDD[3] at cogroup at <console>:28 scala> rdd.collect res0: Array[(Int, (Iterable[String], Iterable[String]))] = Array((4,(CompactBuffer(),CompactBuffer(D))), (1,(CompactBuffer(a, z),CompactBuffer(A))), (3,(CompactBuffer(c),CompactBuffer())), (2,(CompactBuffer(b),CompactBuffer(B, C))))
cartesian(otherDataset) | When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements). |
對兩個RDD中元素進行笛卡爾積運算。
/**
* Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of
* elements (a, b) where a is in `this` and b is in `other`.
*/
def cartesian[U: ClassTag](other: RDD[U]): RDD[(T, U)]
scala> val rdd1 = sc.parallelize(Array(1,2,3,4,5)) rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:24 scala> val rdd2 = sc.parallelize(Array("A","B","C")) rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[5] at parallelize at <console>:24 scala> val rdd = rdd1.cartesian(rdd2) rdd: org.apache.spark.rdd.RDD[(Int, String)] = CartesianRDD[6] at cartesian at <console>:28 scala> rdd.collect res1: Array[(Int, String)] = Array((1,A), (1,B), (1,C), (2,A), (2,B), (2,C), (3,A), (3,B), (3,C), (4,A), (4,B), (4,C), (5,A), (5,B), (5,C))
pipe(command, [envVars]) | Pipe each partition of the RDD through a shell command, e.g. a Perl or bash script. RDD elements are written to the process's stdin and lines output to its stdout are returned as an RDD of strings. |
經過pipe運行外部程序,每一個分區中的元素做爲外部程序入參運行一次外部程序,而外部程序的輸出有建立一個新的RDD。
/**
* Return an RDD created by piping elements to a forked external process.
*/
def pipe(command: String): RDD[String]
[root@localhost home]# more /home/test.sh #!/bin/bash echo "Running shell script" RESULT="" while read LINE do if [ -z ${LINE} ] then break fi RESULT=${RESULT}" "${LINE} done echo ${RESULT} >> /home/out.txt echo "========" >>/home/out.txt
val rdd = sc.parallelize(List("ab","cd","ef","gh","ij"),2) rdd.pipe("/home/test.sh").collect
結果:shell
rdd有兩個分區,test.sh每次運行會輸出一個「Running shell script」字符串,元素輸出至/home/out.txt中。apache
scala> val rdd = sc.parallelize(List("ab","cd","ef","gh","ij"),2) rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[8] at parallelize at <console>:24 scala> rdd.pipe("/home/test.sh").collect res6: Array[String] = Array(Running shell script, Running shell script)
[root@localhost home]# more out.txt ab cd ======== ef gh ij ========
coalesce(numPartitions) | Decrease the number of partitions in the RDD to numPartitions. Useful for running operations more efficiently after filtering down a large dataset. |
減小RDD的partition數量,對過濾掉大量數據後進行算子操做高效運行很是有用。
/**
* Return a new RDD that is reduced into `numPartitions` partitions.
*
* This results in a narrow dependency, e.g. if you go from 1000 partitions
* to 100 partitions, there will not be a shuffle, instead each of the 100
* new partitions will claim 10 of the current partitions.
*
* However, if you're doing a drastic coalesce, e.g. to numPartitions = 1,
* this may result in your computation taking place on fewer nodes than
* you like (e.g. one node in the case of numPartitions = 1). To avoid this,
* you can pass shuffle = true. This will add a shuffle step, but means the
* current upstream partitions will be executed in parallel (per whatever
* the current partitioning is).
*
* Note: With shuffle = true, you can actually coalesce to a larger number
* of partitions. This is useful if you have a small number of partitions,
* say 100, potentially with a few partitions being abnormally large. Calling
* coalesce(1000, shuffle = true) will result in 1000 partitions with the
* data distributed using a hash partitioner.
*/
def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]
scala> val rdd = sc.parallelize(1 to 1000,1000) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:24 scala> val rdd1 = rdd.filter(_%3 == 0) rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[11] at filter at <console>:26 scala> rdd1.partitions.length res7: Int = 1000 scala> rdd1.coalesce(3,false).partitions.length res9: Int = 3
repartition(numPartitions) | Reshuffle the data in the RDD randomly to create either more or fewer partitions and balance it across them. This always shuffles all data over the network. |
該函數其實內部調用就是coalesce(numPartitions, shuffle = true)。
/**
* Return a new RDD that has exactly numPartitions partitions.
* Can increase or decrease the level of parallelism in this RDD. Internally, this uses
* a shuffle to redistribute data.
* If you are decreasing the number of partitions in this RDD, consider using `coalesce`,
* which can avoid performing a shuffle.
*/
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}
repartitionAndSortWithinPartitions(partitioner)
repartitionAndSortWithinPartitions(partitioner) | Repartition the RDD according to the given partitioner and, within each resulting partition, sort records by their keys. This is more efficient than calling repartition and then sorting within each partition because it can push the sorting down into the shuffle machinery. |
/**
* Repartition the RDD according to the given partitioner and, within each resulting partition,
* sort records by their keys.
*
* This is more efficient than calling `repartition` and then sorting within each partition
* because it can push the sorting down into the shuffle machinery.
*/
def repartitionAndSortWithinPartitions(partitioner: Partitioner): RDD[(K, V)]
class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{ override def numPartitions: Int = numParts override def getPartition(key: Any): Int = { key.toString.toInt%numPartitions } } val rdd1 = sc.makeRDD(1 to 10,2) val rdd2 = sc.makeRDD(1 to 10,2) val rdd = rdd1.zip(rdd2) rdd.foreachPartition( x=>{ while(x.hasNext){ println(x.next) } println("============") } ) val rdd3 = rdd.repartitionAndSortWithinPartitions(new MyPartitioner(3)) rdd3.foreachPartition( x=>{ while(x.hasNext){ println(x.next) } println("============") } )
scala> class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{ | override def numPartitions: Int = numParts | override def getPartition(key: Any): Int = { | key.toString.toInt%numPartitions | } | } defined class MyPartitioner scala> val rdd1 = sc.makeRDD(1 to 10,2) rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[37] at makeRDD at <console>:24 scala> val rdd2 = sc.makeRDD(1 to 10,2) rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[38] at makeRDD at <console>:24 scala> val rdd = rdd1.zip(rdd2) rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ZippedPartitionsRDD2[39] at zip at <console>:28 scala> rdd.foreachPartition( | x=>{ | while(x.hasNext){ | println(x.next) | } | println("============") | } | ) (1,1) (2,2) (3,3) (4,4) (5,5) ============ (6,6) (7,7) (8,8) (9,9) (10,10) ============ scala> val rdd3 = rdd.repartitionAndSortWithinPartitions(new MyPartitioner(3)) rdd3: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[40] at repartitionAndSortWithinPartitions at <console>:31 scala> rdd3.foreachPartition( | x=>{ | while(x.hasNext){ | println(x.next) | } | println("============") | } | ) [Stage 17:> (0 + 1) / 3](3,3) (6,6) (9,9) ============ (1,1) (4,4) (7,7) (10,10) ============ (2,2) (5,5) (8,8) ============