在開發一套大型的信息系統中,發現不少功能須要按公司查詢,各個模塊在實現時都是直接查數據庫進行模糊檢索,雖然對錶進行向各個應用的庫中進行了同步,可是在使用中發現,模糊檢索公司時仍是比較卡,原始的查詢數據庫實現方法:前端
var organizeManager = new BaseOrganizeManager(DbHelperFactory.GetHelper(BaseSystemInfo.BusinessDbType, BaseSystemInfo.BusinessDbConnection)); if (string.IsNullOrEmpty(key)) { return null; } key = DbLogic.SqlSafe(key); var where = "(" + BaseOrganizeEntity.FieldFullName + " LIKE'%" + key + "%' OR " + BaseOrganizeEntity.FieldCode + " LIKE '%" + key + "%' OR " + BaseOrganizeEntity.FieldSimpleSpelling + " LIKE '%" + key + "%' OR " + BaseOrganizeEntity.FieldQuickQuery + " LIKE '%" + key + "%') AND " + BaseOrganizeEntity.FieldDeletionStateCode + " = 0 "; var items = organizeManager.GetList2<BaseOrganizeEntity>(where, 20, " Id desc"); if (returnId) { returnList = items.Select(t => new SuggestEntity(t.FullName, t.Id)).ToList(); returnList = items.Select(t => new SuggestEntity(t.FullName + " " + t.Code, t.Id)).ToList(); } else { if (showCode) { returnList = items.Select(t => new SuggestEntity(t.FullName, t.Code)).ToList(); } else { returnList = items.Select(t => new SuggestEntity(t.FullName, t.FullName)).ToList(); } } return returnList;
1:讀取最少的數據;
2:網絡傳輸最少的數據;
3:全部的可能性都預先緩存;
4:緩存過時後的搜索;
5:數據庫的讀取壓力減小;
6:緩存是否重複;
7:緩存最少的內容,佔用最少的內存;
8:全部的應用共享一份緩存數據;redis
下面來開始具體實現數據庫
一、Redis緩存輔助類建立:緩存
public sealed partial class PooledRedisHelper { // 數據庫 public static int InitialDb = 0; private static PooledRedisClientManager instance = null; public static PooledRedisClientManager Instance { get { if (instance == null) { instance = new PooledRedisClientManager(new string[] { BaseSystemInfo.RedisHosts }); } return instance; } } static PooledRedisHelper() { } public static IRedisClient GetClient() { return Instance.GetClient(); } }
二、緩存數據預熱,具體實現時天天緩存更新一次便可(爲了更精準找到檢索的內容,加入到緩存時按公司名字的順序緩存)網絡
public static void CachePreheatingSpelling() { BaseOrganizeManager organizeManager = new Business.BaseOrganizeManager(); organizeManager.SelectFields = BaseOrganizeEntity.FieldId + ", " + BaseOrganizeEntity.FieldCode + ", " + BaseOrganizeEntity.FieldFullName; List<KeyValuePair<string, object>> parameters = new List<KeyValuePair<string, object>>(); parameters.Add(new KeyValuePair<string, object>(BaseOrganizeEntity.FieldDeletionStateCode, 0)); using (var redisClient = PooledRedisHelper.GetClient()) { //using (IDataReader dataReader = organizeManager.ExecuteReader(parameters, BaseOrganizeEntity.FieldId)) using (IDataReader dataReader = organizeManager.ExecuteReader(parameters, BaseOrganizeEntity.FieldFullName)) { while (dataReader.Read()) { string id = dataReader[BaseOrganizeEntity.FieldId].ToString(); string code = dataReader[BaseOrganizeEntity.FieldCode].ToString(); string fullName = dataReader[BaseOrganizeEntity.FieldFullName].ToString(); string simpleSpelling = dataReader[BaseOrganizeEntity.FieldSimpleSpelling].ToString(); string quickQuery = dataReader[BaseOrganizeEntity.FieldQuickQuery].ToString(); string organize = id + ";" + code + ";" + fullName; string key = string.Empty; for (int i = 1; i <= code.Length; i++) { key = code.Substring(0, i).ToLower(); redisClient.AddItemToSortedSet(key, organize, double.Parse(id)); redisClient.ExpireEntryAt(key, DateTime.Now.AddDays(1)); } for (int i = 1; i <= fullName.Length; i++) { key = fullName.Substring(0, i).ToLower(); redisClient.AddItemToSortedSet(key, organize, double.Parse(id)); redisClient.ExpireEntryAt(key, DateTime.Now.AddDays(1)); } for (int i = 1; i <= simpleSpelling.Length; i++) { key = simpleSpelling.Substring(0, i).ToLower(); redisClient.AddItemToSortedSet(key, organize, double.Parse(id)); redisClient.ExpireEntryAt(key, DateTime.Now.AddDays(1)); } for (int i = 1; i <= quickQuery.Length; i++) { key = quickQuery.Substring(0, i).ToLower(); redisClient.AddItemToSortedSet(key, organize, double.Parse(id)); redisClient.ExpireEntryAt(key, DateTime.Now.AddDays(1)); } } } } }
緩存中的數據是怎樣的呢,從上面代碼中咱們能夠看出,涉及檢索公司的全部可能性(按名稱、拼音、Code檢索)組合都進行了緩存,讀取時直接按Key取數據,比緩存整張表再查詢速度要快不少。測試
下圖是緩存數據的局部截圖,這是測試環境緩存的數據,一共166440條記錄。ui
三、模糊檢索Redis緩存公司數據方法,檢索時按Key取數據( List<string> list = redisClient.GetRangeFromSortedList(key, 0, topLimit);)spa
/// <summary> /// Redis中檢索公司 /// </summary> /// <param name="key"></param> /// <param name="returnId"></param> /// <param name="showCode"></param> /// <param name="topLimit"></param> /// <returns></returns> public static List<KeyValuePair<string, string>> GetOrganizesByKey(string key, bool returnId = true, bool showCode = false, int topLimit = 20) { List<KeyValuePair<string, string>> result = new List<KeyValuePair<string, string>>(); using (var redisClient = PooledRedisHelper.GetClient()) { List<string> list = redisClient.GetRangeFromSortedList(key, 0, topLimit); if (list != null) { for (int i = 0; i < list.Count; i++) { string[] organize = list[i].Split(';'); string id = organize[0]; string code = organize[1]; string fullName = organize[2]; if (returnId) { if (showCode) { result.Add(new KeyValuePair<string, string>(id, fullName + " " + code)); } else { result.Add(new KeyValuePair<string, string>(id, fullName)); } } else { if (showCode) { result.Add(new KeyValuePair<string, string>(code, fullName + " " + code)); } else { result.Add(new KeyValuePair<string, string>(code, fullName)); } } } } } return result; }
四、前端在應用時,直接調用底層這個方法,再封裝成選擇下拉框須要的數據便可,如:code
/// <summary> /// 公司檢索 從redis中查詢 /// </summary> /// <param name="key"></param> /// <param name="category"></param> /// <param name="userInfo"></param> /// <param name="showCode"></param> /// <param name="returnId"></param> /// <param name="topLimit"></param> /// <returns></returns> public List<SuggestEntity> GetOrganizesByKey(string key, string category, BaseUserInfo userInfo, bool returnId = true, bool showCode = false, int topLimit = 100) { List<SuggestEntity> returnList = new List<SuggestEntity>(); List<KeyValuePair<string, string>> list = BaseOrganizeManager.GetOrganizesByKey(key, returnId, showCode, 100); foreach (var organize in list) { returnList.Add(new SuggestEntity(organize.Value, organize.Key)); } return returnList; }
前端模糊檢索時,渲染選擇的效果blog
使用這種方式後,比之前檢索速度,效率都快了不少,用戶體驗也好了。