causation理論的一點應用。證實分值不是偶然發生的算法
RCA的工具通常能夠query and classify anomalies,相關性分析(causal probabilistic gaphical models)express
causal bayesian network。嗯,能夠用帶條件的兩個變量關係去構造複雜的關係。app
- ExplainIt!– A Declarative Root-cause Analysis Engine for Time Series Data - Why? The above approach offers three main benefits. - First, the formalism is a non-parametric and declarative way of expressing dependencies between variables and defers any specific approach to the runtime system. - Second, the unified approach naturally lends itself to multivariate dependencies of more complex relationships beyond simple correlations between pairwise univariate metrics. - Third, the approach also gives us a way to reason about dependencies that might be easier to detect only when holding some variables con- stant;
1.feature family (能夠按照host聚合,相似group by。好比某個feature family是75th延時,當前clusterjobs數量)dom
2.ranking 假設(X,Y,Z)=》給出Xi的排序
單變量Z空score:X中每一個Xi,Y中每一個Yj,Pearson product-moment coorelation 的均值和最值 coorMean=meani,j|pi,j|。
多變量Z空,線性迴歸(random projection降維)+loss function 計算R方
Z不空:迴歸Y~Z,X~Z.獲得RY;X.,RX;Z. 迴歸兩個R計算R2(Y;X|Z)
當X中predictors不少,observations不多時。用Ridge penalty達到了和adjusted R2同樣的效果。見後文。ide
實驗是否可以補全圖工具
打分方法的評估:
ranking accuracy:cause是第r個,1/r
success rate: cause in topk 得1,不然0ui
PC/SGS算法 use pairwise conditional independence=>full causal structture.also considering a joint set of variables.
rarely requires the full causal structuewspa
給出了過擬合 用radj。當一個score至少大於s是意外正常發生的機率和n,p的關係。當s小於這個值時不可信的。rest