本文主要記錄閱讀HashMap源碼的過程java
HashMap APInode
HashMap類位於JDK的java.util包api
整體思路:數組
每個key,value對,以node對象存放在連續的數組中,hash值相同的key以鏈表的形式存放在同一個index處(jdk8以後,若是同一個index下的node節點數大於8時,將以紅黑樹的形式存放,這樣將提升查詢效率)。oracle
JDK1.8app
成員變量this
大寫的成員變量都是finalspa
DEFAULT_INITIAL_CAPACITY:默認容量,必須是2的冪,初始值爲16code
MAXIMUM_CAPACITY:最大容量,2的30次方對象
DEFAULT_LOAD_FACTOR:加載因子,0.75(不知道是爲何取值爲0.75)
TREEIFY_THRESHOLD:閾值8(這是jdk8以後才添加的,表示hashmap中某個桶中的節點數大於該值時,存儲結構將由原來的鏈表結構變爲紅黑樹結構)
Node<K,V> 存放在數組中的節點類型;
注意:全部的代碼都來自於jdk1.8
注意:在構造hashmap對象時,不會爲table分配內存,table的內存分配在put操做時進行
一、不指定任何參數,此時全部屬性均按照初始值;
二、構造方法指定map的大小m,並不必定會分配m大小的內存給table,由於capacity必須是2的冪,須要經過以下代碼設置
1 static final int tableSizeFor(int cap) { 2 3 int n = cap -1; 4 5 n |= n >>>1; 6 7 n |= n >>>2; 8 9 n |= n >>>4; 10 11 n |= n >>>8; 12 13 n |= n >>>16; 14 15 return (n <0) ?1 : (n >=MAXIMUM_CAPACITY) ?MAXIMUM_CAPACITY : n +1; 16 17 }
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
將key的hashcode的高16位和低16位作異或操做,按照代碼中的註釋解釋說是爲了減少hash衝突。
put操做
調用putVal,代碼以下:
代碼註釋是本身添加
hashmap的桶中元素多是Node,或者treenode,若是元素較少,則使用鏈表存儲,若是元素較多,則改成紅黑樹存儲
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0)// 若是是第一次put操做,table爲null,則爲其分配默認capacity大小的空間,resize返回的值必定是2的冪 n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null)//n-1的二進制是全爲1,==null表示該桶爲空,若是不爲空,把桶中鏈表第一個元素(或者紅黑樹root) tab[i] = newNode(hash, key, value, null);//桶中第一個元素,採用鏈表形式,所以用newNode else {//桶中已經有其餘元素,hash碰撞 Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))//若是put的key已經存在 e = p; else if (p instanceof TreeNode)//若是p是紅黑樹節點,則插入一個treenode e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else {//鏈表插入,首先找到鏈表尾部節點 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) {//遍歷到尾部 p.next = newNode(hash, key, value, null);//尾部插入節點 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st,當桶中元素大於閾值時 treeifyBin(tab, hash);//將鏈表結構轉換爲樹結構 break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))//若是遍歷過程當中,某個元素的key與須要put的key同樣則break break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null)//爲節點賦值 e.value = value; afterNodeAccess(e);//不知爲什麼該方法爲空 return oldValue; } } ++modCount;//修改次數計數+1,執行到這裏表示put的key是最新的,否則上面的if就已經返回了return oldValue; if (++size > threshold)//若是hashmap的總元素大於閾值,則擴容 resize(); afterNodeInsertion(evict); return null; }
擴容操做reSize
reSize除了擴展空間以外,還須要將原有的數據轉移到新申請的內存空間
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length;//存放原有的capacity int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) {//表示不是第一次擴容 if (oldCap >= MAXIMUM_CAPACITY) {//達到最大容量,不能再擴容了 threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) {//開始轉移數據 Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null)//原有的hashmap中,該桶只有一個元素 newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode)//若是該桶中元素是樹節點, ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);//把樹節點拆分到新map中的不一樣桶中 else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
get操做:這個方法相對簡單,不作過多閱讀
remove操做
public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; }
調用removeNode方法
final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) {//首先須要remove的節點必須存在,不然返回null Node<K,V> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }